57 research outputs found

    Características morfológicas e estudo da vascularização do corpo lúteo cíclico de cabras ao longo do ciclo estral

    Get PDF
    Corpus luteum is a temporary endocrine gland that regulates either the estrous cycle and pregnancy. It presents extreme dependency on the adequate blood supply. This work aims to evaluate goat corpus luteum (CL) vascular density (VD) over the estrous cycle. For that purpose, 20 females were submitted to estrus synchronization/ovulation treatment using a medroxyprogesterone intra-vaginal sponge as well as intramuscular (IM) application of cloprostenol and equine chorionic gonadotrophine (eCG). After sponge removal, estrus was identified at about 72hs. Once treatment was over, female goats were then subdivided into 4 groups (n=5 each) and slaughtered on days 2, 12, 16 and 22 after ovulation (p.o). Ovaries were collected, withdrawn and weighted. CL and ovaries had size and area recorded. Blood samples were collected and the plasma progesterone (P4) was measured through RIA commercial kits. The VD was 24.42±6.66, 36.26±5.61, 8.59±2.2 and 3.97±1.12 vessels/mm² for days 2, 12, 16 and 22 p.o, respectively. Progesterone plasma concentrations were 0.49±0.08, 2.63±0.66, 0.61±0.14 and 0.22±0.04ng/ml for days 2, 12, 16 e 22 p.o, respectively. Studied parameters were affected by the estrous cycle phase. Values greater than 12 p.o were observed. In the present work we observed that ovulation occurred predominantly in the right ovary (70% of the animals), which in turn presented bigger measures than the contra lateral one. There is a meaningful relationship between the weight and size of the ovary and these of CL (r=0.87, r=0.70, respectively, p<0.05). It is possible to conclude that morphology of goat's ovaries and plasma progesterone concentration changed according to estrous cycle stages. We propose these parameters can be used as indicators of CL functional activity.O corpo lúteo é uma glândula endócrina temporária que regula tanto o ciclo estral quanto a prenhez, apresentando extrema dependência de aporte sanguíneo adequado. Objetivaram-se avaliar mudanças morfométricas dos ovários e densidade vascular (DV) dos corpos lúteos (CL) de cabras ao longo do ciclo estral (AOLC). Vinte animais foram submetidos ao tratamento para indução/sincronização do estro, usando esponjas intravaginais commedroxiprogesterona, associadas a aplicações intramusculares de cloprostenol e gonadotrofina coriônica eqüina. Após remoção das esponjas, o estro foi identificado em aproximadamente de 72h. Concluído o tratamento, as cabras foram subdivididas em 4 grupos (n=5 cada) para abate nos dias 2, 12, 16 e 22 após ovulação (p.o.). Posteriormente, foram retirados os ovários e realizadas as mensurações de peso, tamanho e área do órgão e dos CL. Amostras de sangue foram coletadas e a progesterona sérica (P4) mensurada utilizando-se RIA convencional. A DV média dos CL AOLC foi 24,42±6,66; 36,26±5,61; 8,59±2,2 e 3,97±1,12 vasos/mm2 para os dias 2, 12, 16 e 22 p.o., respectivamente. A concentração média de P4 foi de 0,49±0,08; 2,63±0,66; 0,61±0,14 e 0,22±0,04ng/ml para os dias 2, 12, 16 e 22 p.o., respectivamente. Os parâmetros em estudo também se mostraram afetados pela fase do ciclo estral, sendo observados os maiores (p < 0,05) valores no dia 12 p.o. Neste experimento, a ovulação ocorreu predominantemente no ovário direito (70% dos animais), o qual apresentou medidas maiores que o contralateral. Observou-se ainda alta correlação significativa entre o peso do ovário e o do CL (r=0,87; p<0,05) e entre o tamanho destes órgãos (r=0,70; p<0,05). Conclui-se que, a morfologia dos ovários de cabras e a concentração sérica de progesterona variam em função da fase do ciclo estral e podem ser utilizadas como parâmetro na avaliação funcional do órgão

    Prostaglandin F2-alpha receptor (FPr) expression on porcine corpus luteum microvascular endothelial cells (pCL-MVECs)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The corpus luteum (CL) is a transient endocrine gland and prostaglandin F2-alpha is considered to be the principal luteolysin in pigs. In this species, the in vivo administration of prostaglandin F2-alpha induces apoptosis in large vessels as early as 6 hours after administration. The presence of the prostaglandin F2-alpha receptor (FPr) on the microvascular endothelial cells (pCL-MVECs) of the porcine corpus luteum has not yet been defined. The aim of the study was to assess FPr expression in pCL-MVECs in the early and mid-luteal phases (EL-p, ML-p), and during pregnancy (P-p). Moreover, the effectiveness of prostaglandin F2-alpha treatment in inducing pCL-MVEC apoptosis was tested.</p> <p>Methods</p> <p>Porcine CLs were collected in the EL and ML phases and during P-p. All CLs from each animal were minced together and the homogenates underwent enzymatic digestion. The pCL-MVECs were then positively selected by an immunomagnetic separation protocol using Dynabeads coated with anti-CD31 monoclonal antibody and seeded in flasks in the presence of EGM 2-MV (Microvascular Endothelial Cell Medium-2). After 4 days of culture, the cells underwent additional immunomagnetic selection and were seeded in flasks until the confluent stage.</p> <p>PCR Real time, western blot and immunodetection assays were utilized to assess the presence of FPr on pCL-MVEC primary cultures. Furthermore, the influence of culture time (freshly isolated, cultured overnight and at confluence) and hormonal treatment (P4 and E2) on FPr expression in pCL-MVECs was also investigated. Apoptosis was detected by TUNEL assay of pCL-MVECs exposed to prostaglandin F2-alpha.</p> <p>Results</p> <p>We obtained primary cultures of pCL-MVECs from all animals. FPr mRNA and protein levels showed the highest value (ANOVA) in CL-MVECs derived from the early-luteal phase. Moreover, freshly isolated MVECs showed a higher FPr mRNA value than those cultured overnight and confluent cells (ANOVA). prostaglandin F2-alpha treatment failed to induce an apoptotic response in all the pCL-MVEC cultures.</p> <p>Conclusion</p> <p>Our data showing the presence of FPr on MVECs and the inability of prostaglandin F2-alpha to evoke an in vitro apoptotic response suggest that other molecules or mechanisms must be considered in order to explain the in vivo direct pro-apoptotic effect of prostaglandin F2-alpha at the endothelial level.</p

    Reduced Bone Mass and Muscle Strength in Male 5α-Reductase Type 1 Inactivated Mice

    Get PDF
    Androgens are important regulators of bone mass but the relative importance of testosterone (T) versus dihydrotestosterone (DHT) for the activation of the androgen receptor (AR) in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2), encoded by separate genes (Srd5a1 and Srd5a2). 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1−/− mice. Four-month-old male Srd5a1−/− mice had reduced trabecular bone mineral density (−36%, p<0.05) and cortical bone mineral content (−15%, p<0.05) but unchanged serum androgen levels compared with wild type (WT) mice. The cortical bone dimensions were reduced in the male Srd5a1−/− mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05) in orchidectomized WT mice but not in orchidectomized Srd5a1−/− mice. Male Srd5a1−/− mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05). Female Srd5a1−/− mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1−/− mice, is an indirect effect mediated by elevated circulating androgen levels

    A Carboxyl-terminal Sequence in the Lutropin β Subunit Contributes to the Sorting of Lutropin to the Regulated Pathway*

    Get PDF
    Although synthesized in the same pituitary gonadotropes, the secretion profiles of lutropin (LH) and follitropin (FSH) differ. LH is secreted through a regulated pathway and associated with a bolus release at mid-estrous cycle. In contrast, the majority of FSH is secreted constitutively with an incremental increase until ovulation. Both share an identicalα subunit, and thus theβ subunit contains determinants for sorting into the regulated pathway. Previously, we demonstrated that a hydrophobic carboxyl-terminal heptapeptide of the LHβ subunit (Leu-Ser-Gly-Leu-Leu-Phe-Leu), not found in the FSHβ subunit, influences the intracellular behavior of the LH dimer. To test the hypothesis that the peptide contributes to differential sorting, we monitored the fates of LH and LHΔT (LHβ subunit lacking the carboxyl-terminal seven amino acids) dimers in the rat somatotrope-derived GH3 cell line in which both the regulated and constitutive secretory pathways operate. Pulse-chase labeling demonstrated that the LHΔT dimer was diverted to the constitutive pathway, resulting in a significant decrease in the corresponding intracellular pool. Forskolin stimulated LH dimer release 3-fold, which was accompanied by a parallel decrease of intracellular LH; only marginal forskolin stimulation of LHΔT was seen. Immunofluorescence after cycloheximide treatment demonstrated decreased retention of LHΔT compared with LH, consistent with increased constitutive secretion of LHΔT. We also demonstrated that fusing the heptapeptide to the carboxyl terminus of the FSHβ subunit resulted in an increased regulated secretion of this FSH analog compared with wild-type FSH. These data are the first to identify a novel structural determinant responsible for the sorting of a member of the glycoprotein hormone family into the regulated secretory pathway

    Rerouting of a Follicle-Stimulating Hormone Analog to the Regulated Secretory Pathway

    No full text
    LH and FSH are produced by the same gonadotrope cells of the anterior pituitary but differ in their mode of secretion. This coordinated secretion of LH and FSH is essential for normal follicular development and ovulation in females and for spermatogenesis in males. The structural signals encoded in the LH and FSH subunits that govern the intracellular sorting of LH through the regulated secretory pathway and FSH through the constitutive pathway are largely unknown. Our laboratory recently identified the seven amino acid carboxy tail of LHβ as a sorting signal for LH in GH3 cells. Here we compared the morphological features of GH3 cells expressing an FSH analog containing the heptapeptide (FL7AA) with wild-type FSH using confocal microscopy. These experiments were performed to develop a rerouting model for examining structure-function links between secretion pathways of FSH/LH and their biological action. Both FSH- and LH-expressing cells exhibit a fluorescence pattern of randomly dispersed cytoplasmic puncta. FL7AA expressing cells have more intracellular accumulation compared with wild-type FSH and display a unique halo pattern of fluorescence near the plasma membrane. Such a pattern was not observed in cells expressing FSH or LH. Our results demonstrate that this FSH analog containing the carboxy heptapeptide of LHβ is rerouted to the regulated secretory pathway in GH3 cells. This rerouted gonadotropin provides a unique model to study the trafficking, regulation, and function of LH and FSH
    • …
    corecore