13 research outputs found

    Frequency of class I and II integrons in the clinical isolates of Pseudomonas aeruginosa with multidrug resistance in Shahrekord teaching hospitals and Isfahan Shahid Chamran hospital during 2016-2017

    Get PDF
    Background and aims: Increasing the prevalence of nosocomial infections by multidrug resistant (MDR) Pseudomonas aeruginosa has severely challenged the choice of treatment and led to an increased mortality rate. Thus, this study investigated the frequency of class I and II integrons and its association with MDR. Materials and Methods: A total of 175 P. aeruginosa isolates were collected from Shahrekord teaching hospitals and Isfahan Shahid Chamran hospital during 12 months (from April 2008 to March 2009). Antibiotic susceptibility was determined by disc diffusion according to the Clinical and Laboratory Standards Institute (CLSI) Antimicrobial Susceptibility Testing. The E-test strips of imipenem, ciprofloxacin, and amikacin were used to identify the minimum inhibitory concentration and MDR bacteria. Finally, the frequency of class I and II integrons genes was evaluated by using the polymerase chain reaction test. Results: The highest antibiotic resistance and the highest susceptibility belonged to meropenem (86.9%) and polymyxin B (96.0%) by disc diffusion, respectively. By the E-test, the highest and lowest resistance rates were reported for imipenem (97.2%) and ciprofloxacin (86.8%), respectively. The frequency of MDR strains was 82.3% as well. The frequency of class I and II integrons was 57.7% and 17.7% in all P. aeruginosa isolates, as well as 68.1%and 21.5% in the MDR isolates, respectively. There was also a significant correlation between I and II integrons and MDR. Conclusion: Overall, the resistance to different antibiotics and the frequency of MDR strains among the studied P. aeruginosa isolates were very high. There was also a significant correlation between integrons and multidrug resistance. Regarding the role of integrons in the transfer of drug-resistant genes and the development of MDR strains, the use of appropriate diet and accurate determination of the susceptibility pattern of P. aeruginosa isolates are considered necessary. Keywords: Integron, Pseudomonas aeruginosa, Multidrug resistanc

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Accuracy of Ipex-I and Root ZX Mini Electronic Apex Locators and Conventional Radiography in Determining Root Canal Length in Primary Molars with Root Resorption: A Narrative Review

    No full text
    Background and purpose: One of the main goals in pediatric dentistry is to maintain deciduous teeth until the permanent teeth grow. In cases where the pulp of deciduous teeth is involved, pulpectomy is needed which requires determining the correct working length of the canals and cleaning and filling their interior space using a proper filling material. The principles of successful endodontic treatment in permanent teeth are well known, but, determining the anatomy of the canal of deciduous teeth is difficult due to the resorption and deposition of hard tissue in the root canal, the shape, dimensions, and variable conditions of root apex. Therefore, in this narrative review, we investigated the accuracy of Ipex-I and Root ZX mini electronic apex locators and conventional radiography in root canal length determination in resorbed primary molars. A thorough search was conducted in Science Direct, Google Scholar, PubMed, Scopus, Irandoc, SID, Magiran, and Iranmedex covering the articles published in 2000–2020. According to findings, all techniques mentioned were found to have almost similar accuracy in determining the working length in resorbed deciduous molars. However, obtaining radiography images may be difficult in children, therefore, apex locators are more preferable to the conventional method

    The destruction of mucosal barriers, epithelial remodeling, and impaired mucociliary clearance: possible pathogenic mechanisms of Pseudomonas aeruginosa and Staphylococcus aureus in chronic rhinosinusitis

    No full text
    Abstract Chronic rhinosinusitis (CRS) is a pathological condition characterized by persistent inflammation in the upper respiratory tract and paranasal sinuses. The epithelium serves as the first line of defense against potential threats and protects the nasal mucosa. The fundamental mechanical barrier is formed by the cell-cell contact and mucociliary clearance (MCC) systems. The physical-mechanical barrier is comprised of many cellular structures, including adhesion junctions and tight junctions (TJs). To this end, different factors, such as the dysfunction of MCC, destruction of epithelial barriers, and tissue remodeling, are related to the onset and development of CRS. Recently published studies reported the critical role of different microorganisms, such as Staphylococcus aureus and Pseudomonas aeruginosa, in the induction of the mentioned factors. Bacteria could result in diminished ciliary stimulation capacity, and enhance the chance of CRS by reducing basal ciliary beat frequency. Additionally, bacterial exoproteins have been demonstrated to disrupt the epithelial barrier and induce downregulation of transmembrane proteins such as occludin, claudin, and tricellulin. Moreover, bacteria exert an influence on TJ proteins, leading to an increase in the permeability of polarized epithelial cells. Noteworthy, it is evident that the activation of TLR2 by staphylococcal enterotoxin can potentially undermine the structural integrity of TJs and the epithelial barrier through the induction of pro-inflammatory cytokines. The purpose of this article is an attempt to investigate the possible role of the most important microorganisms associated with CRS and their pathogenic mechanisms against mucosal surfaces and epithelial barriers in the paranasal sinuses. Video Abstrac

    Surface modified niosomal quercetin with cationic lipid: an appropriate drug delivery system against Pseudomonas aeruginosa Infections

    No full text
    Abstract The Increase in infections caused by resistant strains of Pseudomonas aeruginosa poses a formidable challenge to global healthcare systems. P. aeruginosa is capable of causing severe human infections across diverse anatomical sites, presenting considerable therapeutic obstacles due to its heightened drug resistance. Niosomal drug delivery systems offer enhanced pharmaceutical potential for loaded contents due to their desirable properties, mainly providing a controlled-release profile. This study aimed to formulate an optimized niosomal drug delivery system incorporating stearylamine (SA) to augment the anti-bacterial and anti-biofilm activities of quercetin (QCT) against both standard and clinical strains of P. aeruginosa. QCT-loaded niosome (QCT-niosome) and QCT-loaded SA- niosome (QCT-SA- niosome) were synthesized by the thin-film hydration technique, and their physicochemical characteristics were evaluated by field emission scanning electron microscopy (FE-SEM), zeta potential measurement, entrapment efficacy (EE%), and in vitro release profile. The anti-P. aeruginosa activity of synthesized niosomes was assessed using minimum inhibitory and bactericidal concentrations (MICs/MBCs) and compared with free QCT. Additionally, the minimum biofilm inhibitory and eradication concentrations (MBICs/MBECs) were carried out to analyze the ability of QCT-niosome and QCT-SA-niosome against P. aeruginosa biofilms. Furthermore, the cytotoxicity assay was conducted on the L929 mouse fibroblasts cell line to evaluate the biocompatibility of the formulated niosomes. FE-SEM analysis revealed that both synthesized niosomal formulations exhibited spherical morphology with different sizes (57.4 nm for QCT-niosome and 178.9 nm for QCT-SA-niosome). The EE% for cationic and standard niosomal formulations was reported at 75.9% and 59.6%, respectively. Both formulations showed an in vitro sustained-release profile, and QCT-SA-niosome exhibited greater stability during a 4-month storage time compared to QCT-niosome. Microbial experiments indicated that both prepared formulations had higher anti-bacterial and anti-biofilm activities than free QCT. Also, the QCT-SA-niosome exhibited greater reductions in MIC, MBC, MBIC, and MBEC values compared to the QCT-niosome at equivalent concentrations. This study supports the potential of QCT-niosome and QCT-SA-niosome as effective agents against P. aeruginosa infections, manifesting significant anti-bacterial and anti-biofilm efficacy alongside biocompatibility with L929 cell lines. Furthermore, our results suggest that optimized QCT-niosome with cationic lipids could efficiently target P. aeruginosa cells with negligible cytotoxic effect

    Infective endocarditis by HACEK: a review

    No full text
    Infective endocarditis (IE) is a severe disease that is still associated with high mortality despite recent advances in diagnosis and treatment. HACEK organisms (Haemophilus spp., Aggregatibacter actinomycetemcomitans, Cardiobacterium hominis, Eikenella corrodens, and Kingella kingae) are gram-negative bacteria that are part of the normal flora of the mouth and upper respiratory tract in humans. These organisms cause a wide range of infections, of which IE is one of the most notable. In order to control and prevent endocarditis caused by HACEK, measures such as oral hygiene and the use of prophylactic drugs should be used for people at risk, including people with underlying heart disease and people with artificial valves. This review is a summary of the main aspects of IE focusing on HACEK organisms

    Novel therapeutic strategy for obesity through the gut microbiota-brain axis: A review article

    No full text
    Background: The interaction between commensal bacteria and the host is essential for health and the gut microbiota-brain axis plays a vital role in this regard. Obesity as a medical problem not only affect the health of the individuals, but also the economic and social aspects of communities. The presence of any dysbiosis in the composition of the gut microbiota disrupts in the gut microbiota-brain axis, which in turn leads to an increase in appetite and then obesity. Because common treatments for obesity have several drawbacks, the use of microbiota-based therapy in addition to treatment and prevention of obesity can have other numerous benefits for the individual. In this review, we intend to investigate the relationship between obesity and the gut microbiota-brain axis as well as novel treatment strategies based on this axis with an emphasis on gut microbiota

    Association between exercise and changes in gut microbiota profile: a review

    No full text
    Multiple diseases can decrease levels and changes in gut microbial populations, while increasing microbiota diversity causes an increase in the immune response. Evidence shows that exercise can affect the gut microbiota and, subsequently, the health of individuals. Also, regular exercise provides many benefits for health, protection against the spread of chronic diseases, and improved quality of life. Exercise can increase the number of helpful microbiota species, enrich microflora diversity, and improve the growth of commensal microbiota. This article reviews recent findings on the interaction of gut microbiota and exercise. Also, another purpose of this research is to suggest different mechanisms that using them can provide the way that the exercise factor can change the gut microbiota
    corecore