1,250 research outputs found

    A Class of Distal Functions on Semitopological Semigroups

    Get PDF
    The norm closure of the algebra generated by the set {nλnk:\{n\mapsto {\lambda}^{n^k}: λT\lambda\in{\mathbb {T}} and kN}k\in{\mathbb{N}}\} of functions on (Z,+)({\mathbb {Z}}, +) was studied in \cite{S} (and was named as the Weyl algebra). In this paper, by a fruitful result of Namioka, this algebra is generalized for a general semitopological semigroup and, among other things, it is shown that the elements of the involved algebra are distal. In particular, we examine this algebra for (Z,+)({\mathbb {Z}}, +) and (more generally) for the discrete (additive) group of any countable ring. Finally, our results are treated for a bicyclic semigroup.Comment: To appear in Methods Funct. Anal. Topolog

    Near-Horizon Extremal Geometries: Coadjoint Orbits and Quantization

    Full text link
    The NHEG algebra is an extension of Virasoro introduced in [arXiv:1503.07861]; it describes the symplectic symmetries of (n+4)(n+4)-dimensional Near Horizon Extremal Geometries with SL(2,R)×U(1)n+1SL(2,R)\times U(1)^{n+1} isometry. In this work we construct the NHEG group and classify the (coadjoint) orbits of its action on phase space. As we show, the group consists of maps from an nn-torus to the Virasoro group, so its orbits are bundles of standard Virasoro coadjoint orbits over TnT^n. We also describe the unitary representations that are expected to follow from the quantization of these orbits, and display their characters. Along the way we show that the NHEG algebra can be built from u(1) currents using a twisted Sugawara construction.Comment: 22 pages, one figure. v2: Title expanded, various minor clarifications added. Published in JHE

    On Rigidity of 3d Asymptotic Symmetry Algebras

    Full text link
    We study rigidity and stability of infinite dimensional algebras which are not subject to the Hochschild-Serre factorization theorem. In particular, we consider algebras appearing as asymptotic symmetries of three dimensional spacetimes, the BMS3, u(1) Kac-Moody and Virasoro algebras. We construct and classify the family of algebras which appear as deformations of BMS3, u(1) Kac-Moody and their central extensions by direct computations and also by cohomological analysis. The Virasoro algebra appears as a specific member in this family of rigid algebras; for this case stabilization procedure is inverse of the In\"on\"u-Wigner contraction relating Virasoro to BMS3 algebra. We comment on the physical meaning of deformation and stabilization of these algebras and relevance of the family of rigid algebras we obtainComment: 50 pages, one figure and two tables; v2: minor improvements, references adde

    Magnetic flux concentrations from dynamo-generated fields

    Full text link
    The mean-field theory of magnetized stellar convection gives rise to the two possibility of distinct instabilities: the large-scale dynamo instability, operating in the bulk of the convection zone, and a negative effective magnetic pressure instability (NEMPI) operating in the strongly stratified surface layers. The latter might be important in connection with magnetic spot formation, but the growth rate of NEMPI is suppressed with increasing rotation rates, although recent direct numerical simulations (DNS) have shown a subsequent increase in the growth rate. We examine quantitatively whether this increase in the growth rate of NEMPI can be explained by an alpha squared mean-field dynamo, and whether both NEMPI and the dynamo instability can operate at the same time. We use both DNS and mean-field simulations (MFS) to solve the underlying equations numerically either with or without an imposed horizontal field. We use the test-field method to compute relevant dynamo coefficients. DNS show that magnetic flux concentrations are still possible up to rotation rates above which the large-scale dynamo effect produces mean magnetic fields. The resulting DNS growth rates are quantitatively well reproduced with MFS. As expected, for weak or vanishing rotation, the growth rate of NEMPI increases with increasing gravity, but there is a correction term for strong gravity and large turbulent magnetic diffusivity. Magnetic flux concentrations are still possible for rotation rates above which dynamo action takes over. For the solar rotation rate, the corresponding turbulent turnover time is about 5 hours, with dynamo action commencing in the layers beneath.Comment: 10 pages, 10 figures, submitted to A&

    Dynamical heterogeneity in aging colloidal glasses of Laponite

    Full text link
    Glasses behave as solids due to their long relaxation time; however the origin of this slow response remains a puzzle. Growing dynamic length scales due to cooperative motion of particles are believed to be central to the understanding of both the slow dynamics and the emergence of rigidity. Here, we provide experimental evidence of a growing dynamical heterogeneity length scale that increases with increasing waiting time in an aging colloidal glass of Laponite. The signature of heterogeneity in the dynamics follows from dynamic light scattering measurements in which we study both the rotational and translational diffusion of the disk-shaped particles of Laponite in suspension. These measurements are accompanied by simultaneous microrheology and macroscopic rheology experiments. We find that rotational diffusion of particles slows down at a faster rate than their translational motion. Such decoupling of translational and orientational degrees of freedom finds its origin in the dynamic heterogeneity since rotation and translation probe different length scales in the sample. The macroscopic rheology experiments show that the low frequency shear viscosity increases at a much faster rate than both rotational and translational diffusive relaxation times.Comment: 12 pages, 5 figures, Accepted in Soft Matter 201

    Nearing Extremal Intersecting Giants and New Decoupled Sectors in N = 4 SYM

    Full text link
    We study near-horizon limits of near-extremal charged black hole solutions to five-dimensional U(1)3U(1)^3 gauged supergravity carrying two charges, extending the recent work of Balasubramanian et.al. We show that there are two near-horizon decoupling limits for the near-extremal black holes, one corresponding to the near-BPS case and the other for the far from BPS case. Both of these limits are only defined on the 10d IIB uplift of the 5d black holes, resulting in a decoupled geometry with a six-dimensional part (conformal to) a rotating BTZ X S3S^3. We study various aspects of these decoupling limits both from the gravity side and the dual field theory side. For the latter we argue that there should be two different, but equivalent, dual gauge theory descriptions, one in terms of the 2d CFT's dual to the rotating BTZ and the other as certain large R-charge sectors of d=4,N =4 U(N) SYM theory. We discuss new BMN-type sectors of the N=4 SYM in the NN\to\infty limit in which the engineering dimensions scale as N3/2N^{3/2} (for the near-BPS case) and as N2N^2 (for the far from BPS case).Comment: 44 pages, references added, minor change

    Negotiations for meaning in the context of a massively multiplayer online role-playing game

    Get PDF
    This study investigated negotiations for meaning as conditions for second language (L2) learning in the context of a massively multiplayer online role-playing game, World of Warcraft (WoW) (Blizzard Entertainment, 2004). Varonis and Gass’s (1985) and Smith’s (2003a) models were used to identify negotiation episodes during on-task and off-task talks among the participants while playing WoW. The participants were six non-native (NNS) and one native English speaker (NS). The NNSs were divided into two teams of three: Team 1 (T1) pre-intermediate and Team 2 (T2) upper-intermediate. The NS played the game with both teams. The study lasted for six months and resulted in 59.96 hours of recorded audio and nine hours of screen-recorded gaming sessions. Negotiation patterns were compared across the L2 proficiency levels and three different types of dyads. The results revealed that (a) T1 encountered more communication breakdowns, but T2 engaged in more negotiations, (b) T1 engaged in more complex negotiations, (c) breakdowns and negotiations occurred more during off-task talk, and (d) breakdowns were triggered more by the NS’s utterances in T1 and by NNSs’ utterances in T2. The results also showed the participants’ abundant L2 use to undertake authentically contextualized game-driven tasks, meticulous involvement in bi- and multi-lateral negotiations, and creative strategies to resolve incomprehension

    Controlling stability and transport of magnetic microswimmers by an external field

    Full text link
    We investigate the hydrodynamic stability and transport of magnetic microswimmers in an external field using a kinetic theory framework. Combining linear stability analysis and nonlinear 3D continuum simulations, we show that for sufficiently large activity and magnetic field strengths, a homogeneous polar steady state is unstable for both puller and pusher swimmers. This instability is caused by the amplification of anisotropic hydrodynamic interactions due to the external alignment and leads to a partial depolarization and a reduction of the average transport speed of the swimmers in the field direction. Notably, at higher field strengths a reentrant hydrodynamic stability emerges where the homogeneous polar state becomes stable and a transport efficiency identical to that of active particles without hydrodynamic interactions is restored
    corecore