221 research outputs found

    Ultra-deep sequencing reveals dynamics of drug Resistance-Associated variants in Hepatitis C viruses: Relevance to treatment outcome and resistance screening

    Get PDF
    Hepatitis C is a global health issue with approximately 3% of the worlds’ population estimated to be infected with the hepatitis C virus (HCV) Inefficiencies in treatment has led to development of direct-acting antivirals (DAAs) that specifically target HCV proteins involved in the virus’s lifecycle1. One of the major concerns arising from the use of the DAAs is the emergence of resistance-associated variants (RAVs) that affect the efficacy of the drugs. RAVs are generally associated with a fitness cost and the use of ultra-deep pyrosequencing technology has shown that in most treatment naïve subjects low frequency circulating strains carry RAVs2. The aim of the study was to investigate i) the clinical relevance of low frequency RAVs; ii) the persistence of RAVs and iii) compensatory mutations in a subset of subjects who had failed boceprevir (SCH503034; protease inhibitor)

    The Binding Site for TRAF2 and TRAF3 but Not for TRAF6 Is Essential for CD40-Mediated Immunoglobulin Class Switching

    Get PDF
    AbstractTo define the role of TRAF proteins in CD40-dependent isotype switching in B cells, we introduced wild-type (WT) and mutant CD40 transgenes that lacked the binding motifs for TRAF6 (CD40ΔTRAF6), TRAF2 and TRAF3 (CD40ΔTRAF2/3), or both (CD40ΔTRAFs) into B cells of CD40−/− mice. The in vivo isotype switch defect in CD40−/− mice was fully corrected by WT and CD40ΔTRAF6, partially by CD40ΔTRAF2/3, and not at all by CD40ΔTRAFs transgenes. CD40-mediated isotype switching, proliferation, and activation of p38, JNK, and NFκB in B cells were normal in WT and CD40ΔTRAF6 mice, severely impaired in CD40ΔTRAF2/3, and absent in CD40ΔTRAFs mice. These results suggest that binding to TRAF2 and/or TRAF3 but not TRAF6 is essential for CD40 isotype switching and activation in B cells

    Venture capital on a shoestring: Bioventures’ pioneering life sciences fund in South Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since 2000, R&D financing for global health has increased significantly, with innovative proposals for further increases. However, although venture capital (VC) funding has fostered life sciences businesses across the developed world, its application in the developing world and particularly in Africa is relatively new. Is VC feasible in the African context, to foster the development and application of local health innovation?</p> <p>As the most industrially advanced African nation, South Africa serves as a test case for life sciences venture funding. This paper analyzes Bioventures, the first VC company focused on life sciences investment in sub-Saharan Africa. The case study method was used to analyze the formation, operation, and investment support of Bioventures, and to suggest lessons for future health venture funds in Africa that aim to develop health-oriented innovations.</p> <p>Discussion</p> <p>The modest financial success of Bioventures in challenging circumstances has demonstrated a proof of concept that life sciences VC can work in the region. Beyond providing funds, support given to investees included board participation, contacts, and strategic services. Bioventures had to be proactive in finding and supporting good health R&D.</p> <p>Due to the fund’s small size, overhead and management expenses were tightly constrained. Bioventures was at times unable to make follow-on investments, being forced instead to give up equity to raise additional capital, and to sell health investments earlier than might have been optimal. With the benefit of hindsight, the CFO of Bioventures felt that partnering with a larger fund might benefit similar future funds. Being better linked to market intelligence and other entrepreneurial investors was also seen as an unmet need.</p> <p>Summary</p> <p>BioVentures has learned lessons about how the traditional VC model might evolve to tackle health challenges facing Africa, including how to raise funds and educate investors; how to select, value, and support investments; and how to understand the balance between financial and social returns. The experience of the fund suggests that future health funds targeting ailments of the poor might require investors that accept health benefits as part of their overall “return.” Learning from Bioventures may help develop health innovation funding for sub-Saharan African that has combined health, financial, and economic development impacts.</p

    Primer ID Informs Next-Generation Sequencing Platforms and Reveals Preexisting Drug Resistance Mutations in the HIV-1 Reverse Transcriptase Coding Domain

    Get PDF
    Sequencing of a bulk polymerase chain reaction (PCR) product to identify drug resistance mutations informs antiretroviral therapy selection but has limited sensitivity for minority variants. Alternatively, deep sequencing is capable of detecting minority variants but is subject to sequencing errors and PCR resampling due to low input templates. We screened for resistance mutations among 184 HIV-1-infected, therapy-naive subjects using the 454 sequencing platform to sequence two amplicons spanning HIV-1 reverse transcriptase codons 34–245. Samples from 19 subjects were also analyzed using the MiSeq sequencing platform for comparison. Errors and PCR resampling were addressed by tagging each HIV-1 RNA template copy (i.e., cDNA) with a unique sequence tag (Primer ID), allowing a consensus sequence to be constructed for each original template from resampled sequences. In control reactions, Primer ID reduced 454 and MiSeq errors from 71 to 2.6 and from 24 to 1.2 errors/10,000 nucleotides, respectively. MiSeq also allowed accurate sequencing of codon 65, an important drug resistance position embedded in a homopolymeric run that is poorly resolved by the 454 platform. Excluding homopolymeric positions, 14% of subjects had evidence of ≥1 resistance mutation among Primer ID consensus sequences, compared to 2.7% by bulk population sequencing. When calls were restricted to mutations that appeared twice among consensus sequence populations, 6% of subjects had detectable resistance mutations. The use of Primer ID revealed 5–15% template utilization on average, limiting the depth of deep sequencing sampling and revealing sampling variation due to low template utilization. Primer ID addresses important limitations of deep sequencing and produces less biased estimates of low-level resistance mutations in the viral population

    Hepatitis C Virus (HCV) NS3 Sequence Diversity and Antiviral Resistance-Associated Variant Frequency in HCV/HIV Coinfection

    Get PDF
    ABSTRACT HIV coinfection accelerates disease progression in chronic hepatitis C and reduces sustained antiviral responses (SVR) to interferon-based therapy. New direct-acting antivirals (DAAs) promise higher SVR rates, but the selection of preexisting resistance-associated variants (RAVs) may lead to virologic breakthrough or relapse. Thus, pretreatment frequencies of RAVs are likely determinants of treatment outcome but typically are below levels at which the viral sequence can be accurately resolved. Moreover, it is not known how HIV coinfection influences RAV frequency. We adopted an accurate high-throughput sequencing strategy to compare nucleotide diversity in HCV NS3 protease-coding sequences in 20 monoinfected and 20 coinfected subjects with well-controlled HIV infection. Differences in mean pairwise nucleotide diversity (π), Tajima's D statistic, and Shannon entropy index suggested that the genetic diversity of HCV is reduced in coinfection. Among coinfected subjects, diversity correlated positively with increases in CD4 + T cells on antiretroviral therapy, suggesting T cell responses are important determinants of diversity. At a median sequencing depth of 0.084%, preexisting RAVs were readily identified. Q80K, which negatively impacts clinical responses to simeprevir, was encoded by more than 99% of viral RNAs in 17 of the 40 subjects. RAVs other than Q80K were identified in 39 of 40 subjects, mostly at frequencies near 0.1%. RAV frequency did not differ significantly between monoinfected and coinfected subjects. We conclude that HCV genetic diversity is reduced in patients with well-controlled HIV infection, likely reflecting impaired T cell immunity. However, RAV frequency is not increased and should not adversely influence the outcome of DAA therapy

    Cross-sectional characterization of HIV-1 env compartmentalization in cerebrospinal fluid over the full disease course

    Get PDF
    To characterize HIV-1 env compartmentalization between cerebrospinal fluid (CSF) and peripheral blood plasma over all stages of the HIV-1 disease course, and to determine the relationship between the extent of CSF HIV-1 env compartmentalization and clinical neurologic disease status

    Epstein-Barr Virus LMP2A Reduces Hyperactivation Induced by LMP1 to Restore Normal B Cell Phenotype in Transgenic Mice

    Get PDF
    Epstein-Barr virus (EBV) latently infects most of the human population and is strongly associated with lymphoproliferative disorders. EBV encodes several latency proteins affecting B cell proliferation and survival, including latent membrane protein 2A (LMP2A) and the EBV oncoprotein LMP1. LMP1 and LMP2A signaling mimics CD40 and BCR signaling, respectively, and has been proposed to alter B cell functions including the ability of latently-infected B cells to access and transit the germinal center. In addition, several studies suggested a role for LMP2A modulation of LMP1 signaling in cell lines by alteration of TRAFs, signaling molecules used by LMP1. In this study, we investigated whether LMP1 and LMP2A co-expression in a transgenic mouse model alters B cell maturation and the response to antigen, and whether LMP2A modulates LMP1 function. Naïve LMP1/2A mice had similar lymphocyte populations and antibody production by flow cytometry and ELISA compared to controls. In the response to antigen, LMP2A expression in LMP1/2A animals rescued the impairment in germinal center generation promoted by LMP1. LMP1/2A animals produced high-affinity, class-switched antibody and plasma cells at levels similar to controls. In vitro, LMP1 upregulated activation markers and promoted B cell hyperproliferation, and co-expression of LMP2A restored a wild-type phenotype. By RT-PCR and immunoblot, LMP1 B cells demonstrated TRAF2 levels four-fold higher than non-transgenic controls, and co-expression of LMP2A restored TRAF2 levels to wild-type levels. No difference in TRAF3 levels was detected. While modulation of other TRAF family members remains to be assessed, normalization of the LMP1-induced B cell phenotype through LMP2A modulation of TRAF2 may be a pathway by which LMP2A controls B cell function. These findings identify an advance in the understanding of how Epstein-Barr virus can access the germinal center in vivo, a site critical for both the genesis of immunological memory and of virus-associated tumors

    Epigenetic and transcriptional signatures of stable versus plastic differentiation of proinflammatory gd T cell subsets

    Get PDF
    Two distinct subsets of γδ T cells that produce interleukin 17 (IL-17) (CD27(-) γδ T cells) or interferon-γ (IFN-γ) (CD27(+) γδ T cells) develop in the mouse thymus, but the molecular determinants of their functional potential in the periphery remain unknown. Here we conducted a genome-wide characterization of the methylation patterns of histone H3, along with analysis of mRNA encoding transcription factors, to identify the regulatory networks of peripheral IFN-γ-producing or IL-17-producing γδ T cell subsets in vivo. We found that CD27(+) γδ T cells were committed to the expression of Ifng but not Il17, whereas CD27(-) γδ T cells displayed permissive chromatin configurations at loci encoding both cytokines and their regulatory transcription factors and differentiated into cells that produced both IL-17 and IFN-γ in a tumor microenvironment
    corecore