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Abstract

Sequencing of a bulk polymerase chain reaction (PCR) product to identify drug resistance mutations informs
antiretroviral therapy selection but has limited sensitivity for minority variants. Alternatively, deep sequencing
is capable of detecting minority variants but is subject to sequencing errors and PCR resampling due to low
input templates. We screened for resistance mutations among 184 HIV-1-infected, therapy-naive subjects using
the 454 sequencing platform to sequence two amplicons spanning HIV-1 reverse transcriptase codons 34–245.
Samples from 19 subjects were also analyzed using the MiSeq sequencing platform for comparison. Errors and
PCR resampling were addressed by tagging each HIV-1 RNA template copy (i.e., cDNA) with a unique
sequence tag (Primer ID), allowing a consensus sequence to be constructed for each original template from
resampled sequences. In control reactions, Primer ID reduced 454 and MiSeq errors from 71 to 2.6 and from 24
to 1.2 errors/10,000 nucleotides, respectively. MiSeq also allowed accurate sequencing of codon 65, an im-
portant drug resistance position embedded in a homopolymeric run that is poorly resolved by the 454 platform.
Excluding homopolymeric positions, 14% of subjects had evidence of ‡ 1 resistance mutation among Primer ID
consensus sequences, compared to 2.7% by bulk population sequencing. When calls were restricted to muta-
tions that appeared twice among consensus sequence populations, 6% of subjects had detectable resistance
mutations. The use of Primer ID revealed 5–15% template utilization on average, limiting the depth of deep
sequencing sampling and revealing sampling variation due to low template utilization. Primer ID addresses
important limitations of deep sequencing and produces less biased estimates of low-level resistance mutations
in the viral population.

Introduction

Combination antiretroviral therapy continues to
improve patient outcomes as better treatment options are

developed.1–3 Advances may be offset by the development of
resistance and cross-resistance among subjects failing multiple
regimens,4,5 which may also be transmitted to susceptible
partners.6,7 Since transmitted drug resistance may compromise
patient response to first line combination therapy,8–10 geno-
typic resistance testing is routinely recommended before ther-
apy initiation.11 The utility of pretherapy testing may be limited
by minority HIV-1 variants present in < 20% of the viral
population that are not reliably detected by standard sequenc-
ing,12 and that may jeopardize virologic response.13–17

The prevalence of minority pretherapy drug resistance
mutations varies, with estimates based on highly sensitive
research assays often double those reported using standard
sequence analysis.14–19 Some variation may be related to
methods for measuring low abundance resistance mutations.
For example, allele-specific polymerase chain reaction
(PCR) detects mutations that make up ‡ 0.01% of the viral
population,15 which would require at least 30,000 input
templates for reasonable sampling; however, prevalence es-
timates are based on a few, predetermined mutations, and
estimates of resistance mutations in an individual may be
biased by differential amplification. Alternatively, single
genome sequencing allows interrogation of entire viral ge-
nomes diluted to a single viral sequence, bypassing some
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amplification errors, but this labor-intensive method gener-
ally achieves low sensitivity due to limited sampling depth.12

In contrast, ultradeep sequencing involves massively parallel
sequencing of amplified viral sequences, producing upward
of 106 sequences and theoretically enabling detection of 1%
variants or less20; however, this method frequently generates
errors during amplification and sequencing, making it diffi-
cult to distinguish true minority variants from sequencing
errors.21 In addition, resequencing of a smaller number of
viral genomes after PCR amplification (PCR resampling)
gives overestimates of the true sampling depth.

To address errors associated with deep sequencing,
threshold cut-offs based on estimated error rates from known
sequences have been established.22 Cut-offs do not account
for errors that may be introduced during the PCR step, such as
biased amplification and nucleotide misincorporation,23,24

nor do they address PCR resampling. Here, an alternative
strategy engineered into the cDNA synthesis step (Primer ID)
was used to circumvent the need for statistically defined cut-
offs25 allowing (1) definition of a background error rate for
two deep sequencing platforms; (2) estimation of the preva-
lence of preexisting reverse transcriptase inhibitor (RTI) re-
sistance mutations among chronically infected subjects; and
(3) comparison of prevalence estimates from standard
methods to those obtained by deep sequencing.

Materials and Methods

Study population

Study subjects were previously enrolled in the University
of North Carolina Center for AIDS Research HIV Clinical
Cohort Study (UCHCC).26 UCHCC is an ongoing, clinical
cohort enrolling HIV-infected adults receiving care at UNC.
UCHCC maintains an electronic database of patient infor-
mation and houses a repository of plasma samples obtained
during routine care. UCHCC subjects were eligible if they (1)
initiated therapy after December 31,1999 with two or more
nucleoside/tide reverse transcriptase inhibitors (NRTI) plus
one nonnucleoside reverse transcriptase inhibitor (NNRTI),
or three or more NRTI; and (2) had at least one reported
pretherapy HIV-1 RNA level. This study was reviewed and
approved by the University of North Carolina Institutional
Review Board.

HIV-1 sequencing

For most subjects (N = 141/184), bulk sequencing analyses
were obtained using commercial HIV-1 GenoSure (Plus)
assays (LabCorp, Research Triangle Park, NC). If no bulk
sequence analysis was available (N = 43/184), we attempted
in-house sequencing of HIV-1 reverse transcriptase (RT)
codons 34–245 using the ABI Prism BigDye Version 1.1
Terminal Cycle Sequencing (Life Technologies, Carlsbad,
CA). To check for evidence of cross-contamination, se-
quences were aligned by Clustal W version 227 and inspected
by constructing neighbor-joining phylogenetic trees evalu-
ated with 1,000 bootstrap replicates.28

Sample amplicon libraries were generated using previously
described methods.25 Samples with < 4.5 log10 HIV-1 RNA
copies/ml were centrifuged to concentrate the virus particles
prior to RNA extraction (QIAamp viral RNA extraction kit,
Qiagen, Hilden, Germany). One-third of the RNA was used in

separate cDNA synthesis reactions targeting two regions of
HIV-1 RT, HXB2 nucleotides 2648–2964 and 2965–3257 (RT
codons 34–139 and 139–245)17 using the primers listed in
Supplementary Table S1 (Supplementary Data are available
online at www.liebertpub.com/aid). The cDNA primers in-
cluded a barcode to allow pooling of samples during the deep
sequencing step and a randomized sequence tag of eight nu-
cleotides (Primer ID) to allow identification of each individual
template in the subsequent sequence analysis (Fig. 1A). Pur-
ified cDNA25 was used for seminested PCR (Fig. 1B) using
Phusion Hot Start II High Fidelity DNA polymerase (Thermo
Fisher Scientific, Waltham, MA); annealing temperatures
were 67�C and 63�C for RT fragments 1 and 2, respectively
(Supplementary Table S1). Input cDNA was initially esti-
mated based on the assumption that all RNA templates (500
copies) were copied into cDNA.

Amplified DNAs were pooled in equimolar concentrations
and gel purified (QIAquick gel purification kit, Qiagen).
Pools were submitted for sequencing on the 454 GS FLX
sequencing platform with XLR80 titanium reagents (Roche,
Indianapolis, IN). To compare 454 and MiSeq nucleotide
calls, 19 amplicons were also sequenced using the 150-bp
paired-end sequencing protocol (HIV-1 RT codons 34–74
and 111–139, HXB2 nucleotides 2648–2770 and 2878–2964)
on the Illumina MiSeq sequencing platform (San Diego, CA).
Illumina MiSeq adapters were added during the initial round
of PCR.

Plasmid controls

The entirety of HIV-1 RT (HXB2 nucleotides 2550–3515),
derived from a clinical sample, was cloned into vector
pcDNA3.1 (Life Technologies). Plasmids were linearized
with BamHI, purified using the Minelute PCR purification kit
(Qiagen), quantified by UV spectrophotometry using a Na-
nodrop 1000 (Thermo Fisher Scientific), and serially diluted
to 3,000, 10,000, 30,000, and 300,000 copies. Plasmid DNA
dilutions were denatured at 95�C for 5 min, cooled, and
tagged with distinct cDNA primers, including Primer ID,
during a single round of DNA synthesis with Platinum Taq
(Life Technologies). Excess cDNA primers were removed25

and samples were amplified by nested PCR using a protocol
identical to samples with primers listed in Supplementary
Table S1, pooled in equimolar concentration, and gel purified
(Qiagen). Pools were sequenced over HIV-1 RT codons 34–
139 using the Roche 454 Junior (HXB2 nucleotides 2648–
2964) and Illumina MiSeq sequencing platforms (HXB2
nucleotides 2648–2868 and 2782–2964).

Sequence analysis

Deep sequencing data were processed using a custom
pipeline of computer programs,25 which is available by re-
quest along with a sample dataset. Briefly, sequence length
distributions were inspected, short reads and reads with am-
biguous base calls were discarded, and the remaining se-
quences were compared to HXB2 pol for orientation and
location. Sequences with an invalid Primer ID or barcode
were discarded, and filtered sequences were partitioned first
by barcode (sample) and then Primer ID (viral template).
Sequences with a Primer ID that occurred less than three
times within a sample were discarded (less than five times for
MiSeq), and consensus sequences were generated from
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sequences with the same Primer ID. Only 1.5% of sequences
were discarded because their Primer ID occurred on less than
three sequences within a sample. A larger number of identical
Primer ID reads was used to build the consensus sequence for
data from the MiSeq platform because of the larger number of
reads available and with the goal of obtaining a more reliable
consensus sequence.

Drug resistance was defined using an updated list of
surveillance drug resistance mutations to exclude poly-
morphisms that may not contribute to a resistance pheno-
type.29 Surveillance drug resistance mutations detected by

deep sequencing were quantified using two conditions (Fig.
1C): (1) barcode- and Primer ID-defined consensus se-
quences and (2) barcode- and Primer ID-defined consensus
sequences, but only including resistance mutations that
occurred in more than one consensus sequence within a
sample (i.e., associated with two or more different Primer
ID consensus sequences). The relative abundance of indi-
vidual resistance mutations per sample was calculated by
dividing the number of sequences with at least one resis-
tance mutation by the total number of consensus sequences
obtained for the sample.

FIG. 1. Primer ID method to estimate the HIV-1 population. (A) A unique Primer ID sequence is incorporated into each
viral genome along with a sample-specific barcode (blue) during cDNA synthesis. For each clinical subject sample, two
independent cDNA synthesis reactions were set up to query most of HIV-1 reverse transcriptase (RT) codons 34-245, shown
(A) as Amplicon 1 and 2. Amplicon 2 is enlarged to illustrate the details of the cDNA primer. (B) Differential amplification
may occur during polymerase chain reaction (PCR) so that the probability of amplification is not equally distributed across
individual viral genomes. (C) Illustration of how Primer ID is applied to correct errors that accumulated over a deep
sequencing run. Within each barcoded (blue) sample, a single majority-rules consensus sequence is generated from three or
more sequences with the same Primer ID (red, green, yellow). Collectively, consensus sequences reflect the actual number
of viral genomes tagged during cDNA synthesis rather than what is best amplified. Method (2) is more conservative than (1)
since single occurrences of resistance mutations on Primer ID consensus sequences are also excluded as error.
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Deep sequencing-detected resistance mutations were
considered in the context of homopolymeric regions, which
are error hotspots for the 454 sequencing platform.21,30 We
defined homopolymeric regions as four or more consecutive,
identical nucleotides plus the two flanking nucleotides. We
used the 2004 HIV-1 subtype B consensus sequence to define
homopolymer-associated positions for clinical subject sam-
ples (available from the Los Alamos HIV Database at
www.hiv.lanl.gov), and we defined homopolymeric regions
directly for the subtype C plasmid control. In the subtype C
control sequence, 75 homopolymer-associated positions
were identified within the 317 nucleotide sequence spanning
HXB2 2648–2964. In the 2004 subtype B consensus se-
quence, 61 and 45 homopolymer-associated positions were
identified within this sequence and the downstream 265 nu-
cleotide sequence spanning HXB2 2993–3257. Since muta-
tions within HIV-1 RT codons 65, 67, 74, 100, 101, 103, 115,
116, and 219 were within regions influenced by homopoly-
meric tracts, they were excluded from overall prevalence
estimates. However, some of these positions were included in
the comparative analysis with the MiSeq data.

Statistical analysis

Standard errors and 95% confidence intervals (CI) for
plasmid control error rates (errors per 10,000 nucleotides in
consensus sequences) were calculated across all samples
using clustered sandwich estimators31 and the Poisson dis-
tribution. Standard errors and 95% CI for proportions were
estimated using the binomial distribution. Sequencing depth,
or the number of sequences required to observe x% viral
variant with 95% confidence, was estimated using a power
analysis. Distributions of categorical variables were com-
pared using Pearson’s v2 test and median values of continu-
ously distributed variables were compared using the
Kruskal–Wallis test. Statistical analyses were conducted in
SAS version 9.3 (SAS Institute, Cary, NC).

Results

Quantifying deep sequencing error

The goal of this study was to examine low-level resistance
to RT inhibitors encoded within the RT coding domain.
Control amplicons were designed to include several impor-
tant resistance positions: RT codons 34–139 or HXB2 nu-
cleotides 2648–2964. This region was selected for control
experiments since it is richer in homopolymers compared to
the downstream amplicon spanning HIV-1 RT codons 138–
245 (42% of nucleotides near homopolymer positions in
amplicon 1 versus 34% in amplicon 2), and since many
clinically important resistance mutations are located in this
sequence, including K103N and K65R.

First, we established a residual error rate for both the 454
and Miseq platforms using plasmid controls to evaluate our
ability to interpret rare variants using either the raw se-
quences or sequences corrected by Primer ID, which was
used as the primer in the first round of DNA synthesis. We
used Taq DNA polymerase rather than RT in the first round of
synthesis because of low template utilization by RT when
starting with a DNA template; also, we used a DNA template
rather than an RNA template to avoid misincorporation
during the synthesis of RNA in vitro. A total of 112,108 reads

of the 317 nucleotide amplicon obtained using the 454 plat-
form were collapsed into 2,893 Primer ID consensus se-
quences across all samples. The overall error rate using raw
sequences was 71/10,000 nucleotides (95% CI: 70–72),
which was reduced to 2.6/10,000 nucleotides (95% CI: 2.2–
3.2) using the Primer ID/consensus sequence approach
(Supplementary Table S2). Over 75 homopolymeric posi-
tions, 6.0 (95%CI: 4.8–7.4) miscalls were observed every
10,000 nucleotides using Primer ID; excluding homopoly-
meric regions reduced the error to 1.6/10,000 (95% CI: 1.3–
2.0) nucleotides. Errors were substitutions (76%), deletions
(22%), or insertions (1.7%). Error frequency is compared for
each position queried in Fig. 2A.

We were especially interested in the potential impact of
homopolymeric error in the region of the K65 codon, the po-
sition of an important resistance mutation for tenofovir. In
most subtype B isolates the lysine codon at this position is
AAA and part of a longer homopolymeric region. However,
some subtype B and most subtype C isolates have the AAG
codon embedded in this longer homopolymer, and misplace-
ment of the G can create the appearance of the AGA codon at
this position, which would be interpreted as a resistance mu-
tation (arginine). In the control plasmid, which had a K65
AAG codon, only 59% of raw sequences had the correct se-
quence and 38% of the sequences were ‘‘ATA AAA A-G
AAA GAC.’’ This was caused by the undercall of an A in the
homopolymeric region in front of the AAG codon, thus
shifting the G one position to the left and creating an AGA
codon. Since it is not possible to know which A of the ho-
mopolymeric tract was undercounted, the presence of the
AGA codon cannot be interpreted. A more difficult situation
would be when there is an undercall in the upstream portion of
the homopolymeric tract and an overcall in the downstream
portion, which would shift the G and leave the reading frame
intact, thus obscuring the effect of the homopolymeric errors
and creating an erroneous call for a resistance mutation. This
was a very rare event that occurred in 12/112,108 raw reads.

Alternatively, deep sequencing with the MiSeq platform is
not susceptible to homopolymeric miscalls because it does
not rely on the linearity of the relationship between the
number of consecutive identical nucleotides and signal peak.
Using the MiSeq sequencing platform, 123,822 raw reads
were sampled from 678,702 total paired-end reads of the 317
nucleotide control amplicon that passed Illumina quality fil-
ters. From these, 2,710 Primer ID consensus sequences were
generated. Using the MiSeq platform to sequence the same
set of controls yielded an error rate of 1.2/10,000 bases (95%
CI: 0.59–2.4) compared to 24/10,000 bases (95% CI: 18–32)
using raw sequence data (Supplementary Table S2). All er-
rors were substitutions, and no difference was observed
within homopolymeric regions (1.1 errors/10,000 nucleo-
tides, 95% CI: 0.51–2.5). However, higher error rates were
observed in the downstream compared to the upstream paired-
end sequence (rate ratio: 2.9, 95% CI: 1.7–5.0). Within the
downstream sequence, errors increased over the run 2.6 times
per 100 nucleotides sequenced (95% CI: 1.3–5.0). Positional
errors associated with the MiSeq platform are shown in Fig. 2B.

Prevalence of pretherapy drug resistance mutations

Of 331 eligible subjects in the UCHCC, 184 (56%) had an
archived pretherapy sample. Most were chronically infected,
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with median 254 [interquartile range (IQR): 95–398] CD4 +

T cells/ll and 4.8 (IQR: 4.2–5.3) log10 HIV-1 RNA copies/ml
prior to therapy (Table 1). The sequence analysis for these
184 subjects was based on the identification of resistance
mutations to any RTI, or specifically to an NRTI or an
NNRTI, with the resistance mutations defined by the 2009 list
of surveillance drug resistance mutations.29 We excluded
homopolymer-associated positions from these prevalence
estimates to allow for later comparison to the 454 plat-
form. Based on sequencing of a bulk PCR product, 2.7% of
subjects (N = 5/184, 95% CI: 0.89–6.2%) had an RTI re-
sistance-associated mutation. NRTI-associated resistance
mutations were the most common, being present in 2.2%
of subjects (N = 4/184, 95% CI: 0.60–5.5%), while 1.1% of
subjects (N = 2/184, 95% CI: 0.13–3.4%) had an NNRTI
resistance-associated mutation. The RTI resistance muta-
tions detected by bulk sequencing in these five subjects are
shown in Fig. 3A.

Across 184 subjects, > 106 raw sequences were generated
using the 454 sequencing platform, 73% (N = 746,809) of

which were > 300 nucleotides long. Excluding mutations
below 1% abundance in the raw reads, 21% of subjects
(N = 38/184, 95% CI: 15–27%) had any RT inhibitor resis-
tance mutations, including 18% (N = 34/184, 95% CI: 13–
25%) and 7.1% (N = 13/184, 95% CI: 3.8–12%) with an
NRTI or NNRTI resistance mutation (Supplement Table S3).
However, these estimates overlook the effects of allelic bias
during PCR amplification, PCR resampling, and potential
hotspots for error incorporation.

We next used the Primer IDs to form consensus sequences
from the reads that represented PCR resampling. Across both
amplicons, a median 1,475 (IQR: 598–2,471) raw sequences
per subject were collapsed into a median 41 (IQR: 18–76)
consensus sequences per subject, corresponding to an aver-
age sequencing depth for reliable detection of about 7%
(IQR: 4–17%). The large reduction in usable reads from the
raw reads to the consensus sequences is a function of re-
moving PCR resampling with Primer ID tagging to reveal the
actual number of templates sampled. We observed that only
5–15% of the RNA templates added to the cDNA reactions

FIG. 2. Percent incorrect nucleotide calls
for each queried position of control se-
quence. (A, B) Positional errors for se-
quences read by the 454 deep sequencing
platform. (B) This is graphed using a smaller
y-axis scale to visualize very low error fre-
quency observed after Primer ID correction
of raw sequences. Homopolymeric tracts are
highlighted along the x-axis using dark gray
bars. (C) Positional errors for sequences
read using the Illumina MiSeq deep se-
quencing platform. The read length of each
MiSeq paired end is highlighted along the
x-axis using dark gray bars. Percent incor-
rect nucleotides was calculated for each
nucleotide position by comparing raw se-
quences (gray line) or Primer ID consensus
sequences (black line) to known plasmid
control sequences. Error frequency was
calculated for each platform across all dilu-
tions submitted for deep sequencing.
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resulted in consensus sequences, indicating inefficient cDNA
priming and/or extension, or inefficient inclusion of cDNA
products into the PCR.

In our first analysis using Primer ID, a resistance mutation
was considered if it appeared in any consensus sequence
created using Primer ID, even if it appeared in a single con-
sensus sequence (Fig. 1C, method 1). A total of 14% (N = 26/
184, 95% CI: 9.4–20%) of subjects had RTI resistance-as-
sociated mutations among Primer ID consensus sequences
using the 454 platform, including 11% (N = 20/184, 95% CI:
6.8–16%) of subjects with NRTI resistance mutations and
4.9% (N = 9/184, 95% CI: 2.3–9.1%) of subjects with NNRTI
resistance mutations. All of the RTI resistance mutations
observed by bulk sequencing were also observed in the Pri-
mer ID consensus sequences (Fig. 3B). Conversely, using
Primer ID consensus sequences rather than raw sequences
resulted in a 33% reduction in the number of subjects where a
resistance mutation was observed (21% versus 14%) after
using a conservative (but arbitrary) 1% cut-off for mutations
in the raw reads.

The frequency of single mutations of any type in the data
set of Primer ID consensus sequences was four times higher
than expected given the error rate determined using the

plasmid sequences. Thus, in most cases the call of a resis-
tance mutation based on a single observation was likely ac-
curate. However, in a second, more conservative analysis,
only those resistance mutations that appeared in at least two
consensus sequences were counted (Fig. 1C, method 2).

Table 1. Baseline Characteristics

of Clinical Subjects

All eligible
Sample

available

Characteristic N = 331 N = 184

Gender, n (%)
Female 77 (23%) 42 (23%)
Male 254 (77%) 142 (77%)

Race, n (%)
Black 181 (55%) 98 (53%)
White 92 (28%) 51 (28%)
Other 58 (17%) 35 (19%)

Age, median (IQR)a 38 (31–46) 38 (31–47)

HIV risk group
MSM, n (%) 144 (44%) 80 (43%)
IDU, n (%) 29 (8.8%) 15 (8.1%)
Heterosexual, n (%) 196 (59%) 110 (60%)

Year of first therapy, n (%)
1999–2001 104 (31%) 38 (21%)
2002–2004 99 (30%) 64 (35%)
2005–2007 83 (25%) 54 (29%)
> 2007 45 (14%) 28 (15%)

First regimen, n (%)
NRTI only 45 (14%) 22 (12%)
NVP 22 (6.7%) 9 (4.9%)
EFV 264 (80%) 153 (83%)

HIV-1 RNA log10

copies/ml, median
(IQR)

4.8 (4.3–5.4) 4.8 (4.2–5.3)

CD4 + T cells/ll, median
(IQR)

205 (54–357) 254 (95–398)

aAge is calculated using the date of antiretroviral therapy
initiation.

IQR, interquartile range; MSM, men who have sex with men;
IDU, injection drug use; NRTI, nucleoside reverse transcriptase
inhibitor; NVP, nevirapine; EFV, efavirenz.

FIG. 3. Subjects with preexisting RT inhibitor resistance
mutations. (A) The RT inhibitor resistance genotype for each
of five subjects with mutations detected using standard se-
quence analysis. (B) The RT inhibitor resistance genotype for
26 subjects with resistance mutations detected using the 454
FLX deep sequencing platform, corrected using Primer ID.
Mutations associated with a single Primer ID consensus se-
quence within a subject sample are shown in parentheses. RT
codons and mutations associated with nonnucleoside reverse
transcriptase inhibitor (NNRTI) resistance are highlighted in
bold italic type, while RT codons and mutations associated
with nucleoside reverse transcriptase inhibitor (NRT)I resis-
tance are shown in standard type. Only RT codons outside of
homopolymeric influence were included in this analysis. Lack
of a particular substitution associated with RT inhibitor re-
sistance is indicated by a dash.
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When only multiple (i.e., two or more) within-subject ob-
servations of a specific resistance mutation were included, the
prevalence of RTI resistance mutations among these 184
subjects was 6.0% (N = 11/184, 95% CI: 3.0–10%), re-
presenting six additional subjects over the five who were also
identified using bulk sequence analysis (Fig. 3B).

The preceding analysis did not include the homopolymeric
regions, and we carried out a separate analysis to see what
influence they would have on calls of drug resistance muta-
tions. We found that only four (2%) out of 184 subjects se-
quenced using 454 had a predominant ‘‘AAG’’ (a wild-type
Lys codon) at RT codon 65, and 11 (6%) subjects had an
‘‘AAG’’ at RT codon 65 as a minority variant with abundance
ranging from 1% to 24%. No evidence of K65R was found. If
other homopolymeric positions were included, an additional
24 subjects would have been classified as RTI resistant using
the 454 data with consensus sequences, raising the overall
prevalence to 27% (N = 50/184). Some calls at homopoly-
meric positions were also seen by bulk sequence analysis (in
three subjects) and were unlikely due to homopolymeric error
given their high abundance. In contrast, homopolymer-
associated resistance mutations detected solely by deep se-
quencing ranged in frequency from 0.35% to 12.5% and most
appeared once within a sample. Assuming these single oc-
currences were miscalls due to homopolymeric error, only six
additional subjects would be classified as having preexisting
RTI resistance (based on the mutation being on more than one
consensus sequence). Thus, if homopolymer-associated po-
sitions were included, prevalence estimates would increase to
9% (N = 17/184).

Relative abundance of resistance mutations
within viral populations

The use of Primer ID allows an assessment of the number
of viral genomes that were actually sampled from a subject,
thus allowing an assessment of both sequencing depth and
the relative abundance of detected mutations from a specific
clinical sample. There were six subjects who had resistance
mutations that were detected in multiple Primer ID con-
sensus sequences but not detected by bulk sequencing. The
median abundance of these mutations within the viral
population in each person, determined using the maximum
proportion of sequences in which the mutation was ob-
served, was 1.8% (IQR: 1.2–2.8%). These subjects had a
higher than average number of consensus sequences com-
pared to the entire population, with a median 159 consensus
sequences (IQR: 106.5–235.5) per subject across both am-
plicons. There were an additional 15 subjects who had a
resistance mutation present in one Primer ID consensus
sequence and the median abundance of these mutations was
1.7% (IQR: 0.67–1.1%), detected among a median 73
consensus sequences per subject (IQR: 44–149). However,
although these groups of subjects had more consensus se-
quences on average, the estimate of abundance is signifi-
cantly limited given the low number of observations of each
mutation, and the ability to detect variants at even less
abundance is limited by low template utilization, as re-
vealed using the Primer ID. This phenomenon is highlighted
in Fig. 4, where the majority of low-abundance resistance
mutations were detected on a single Primer ID consensus
sequence within a subject sample.

Using Primer ID, few subjects with RTI resistance muta-
tions had evidence of multiple resistance mutations. Of 21
subjects with minority drug resistance mutations, only two
(10%) had more than one drug resistance mutation, each
occurring on separate Primer ID consensus sequences at very
low frequency. Of five subjects with a majority drug-resistant
population, only one (20%) had multiple resistance muta-
tions. This subject had multiple drug resistance mutations
that were also revealed by bulk sequence analysis: Y181C,
G190S, and L210W appeared with T215Y, T215S, or T215D
among 79% (N = 26/29), 10% (N = 3/29), or 10% (N = 3/29)
of consensus sequences, respectively, while M41L was
linked to homopolymer-associated L74V and K101E in 94%
(N = 29/31) of consensus sequences. Together, this suggests
that this subject was initially infected with a variant carrying
M41L, L74V, K101E, Y181C, G190S, L210W, and T215Y
mutations, with the virus slowly reverting at codons 74 and
215.

Comparison of deep sequencing platforms
in a clinical setting

Sequences spanning HIV-1 RT codons 34–74 and 111–139
(HXB2 nucleotides 2648–2770 and 2878–2964) were deter-
mined for 19 of 184 subjects using the Illumina MiSeq
platform. Based on previous analyses of the data from the 454
FLX sequencing platform, we selected subjects who had the
most consensus sequences constructed from ‡ 3 raw se-
quences sharing the same Primer ID [median 203 (IQR: 168–
247) consensus sequences], indicating that these samples had
the highest level of genomes incorporated into the cDNA/
PCR step. Using the MiSeq platform, a median 273 (IQR:
192–583) consensus sequences were constructed from ‡ 5
raw sequences sharing a Primer ID [median 29,743 (IQR):
24,686–33,086 raw sequences]. For 17 of the 19 subjects, the
number of consensus sequences generated using the MiSeq

FIG. 4. Prevalence and relative abundance of preexisting
RT inhibitor resistance mutations among clinical subjects
(N = 184). All estimates are derived from Primer ID cor-
rected deep sequencing using the 454 FLX platform. The
right-hand panel excludes RT positions near homopoly-
meric tracts, defined as four or more consecutive, identical
nucleotides plus the two flanking nucleotides. The left-hand
panel includes all RT inhibitor resistance mutations, even
those near homopolymeric tracts. RT inhibitor resistance
mutations were defined using an updated list of surveillance
drug resistance mutations.29
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platform was comparable to those obtained using the 454
FLX platform despite a nearly 10-fold increase in raw se-
quences. Thus, the efficiency of the deep sequencing platform
was probably not a factor influencing template usage in these
17 cases. For the remaining two subjects, the number of
consensus sequences increased 6- or 12-fold. Although every
effort was made to sequence the same amplicons submitted
for 454 sequencing, RNA extraction was repeated for these
two subjects since their cDNA and amplicons were previ-
ously exhausted. In these two cases, high viral titers at or near
the detection limit of the viral load assay (6.6–7.9 log10 HIV-1
RNA copies/ml) and dilution error could explain the dis-
crepancy in apparent higher template utilization.

A total of 108 amino acid changes were observed in the RT
coding region using both sequencing platforms, with 74
mutations detected using the 454 platform and 82 using the
MiSeq platform. About 44% (N = 48/108) were detected by
both sequencing platforms, 24% (N = 26/108) were detected
by the 454 platform alone, and 31% (N = 34/108) were de-
tected solely by the Illumina MiSeq platform. Nearly 72%
(N = 43/60) of mutations detected by a single sequencing
platform occurred on a single Primer ID consensus sequence,
suggesting that these mutations were either the result of
method error or of stochastic sampling of rare variants. All 34
variants detected solely by the Illumina MiSeq platform were
within the downstream paired end sequence, which was re-
vealed as an error hotspot by the control experiments (Fig.
2C). Conversely, 38% (N = 10/26) of variants detected by the
454 platform alone were associated with homopolymeric
regions, but most of the variants outside of homopolymeric
regions occurred once (N = 10/16, 62%) and could be due to a
low number of templates.

To demonstrate reproducibility of the Primer ID method,
multiple copy number dilutions of HIV-1 RNA from a single
subject sample were tagged with unique Primer ID, amplified
over HIV-1 RT codons 34–139, and submitted for Illumina
MiSeq sequencing individually. We intentionally made rep-
licates with low template input to explore the limits of the
Primer ID approach in detecting minor variants. This subject
had evidence of K103N on 24 of 39 (61%) Primer ID con-

sensus sequences (454 FLX). The relative abundance of
K103N was consistent across platforms, most dilutions, and
resampled raw sequences versus Primer ID consensus se-
quences, ranging from 56% to 78% abundance (Table 2).
However, the replicate JKRT4 had the lowest yield of Primer
ID consensus sequences and the apparent K103N abundance
was approximately half of the other replicates. Each of these
replicates was represented by hundreds of thousands of raw
sequence reads. Primer ID reveals the depth of sequencing,
allowing an assessment of the quality of sampling of the
original templates and informing the accuracy of the infer-
ence of relative abundance.

Discussion

Deep sequencing methods are subject to bias introduced by
PCR amplification, and those methods that allow consecutive
nucleotide additions in a homopolymeric run (e.g., 454 and
Ion Torrent) are also vulnerable to erroneous calls in or near
these runs.30 Here, an alternative deep sequencing method
that tags a single viral template with a unique Primer ID prior
to PCR25 was used to estimate the prevalence of preexisting
RTI resistance mutations within a clinical population initi-
ating care for HIV-1. Among 184 subjects, up to 14% had
evidence of RTI resistance mutations, compared to 2.7%
detection by sequencing of a bulk PCR product. An even
more conservative use of the deep sequencing data based on
making calls only if the mutation was associated with at least
two consensus sequences gave an RTI resistance mutation
detection rate of 6.0%, still more than a 2-fold increase over
that seen by sequencing of a bulk PCR product, and these
estimates did not include an analysis of homopolymeric re-
gions that are susceptible to especially high error rates using
the 454 sequencing platform.

Prevalence estimates must be critically interpreted since
the value can be inflated due to several intrinsic errors in the
sequencing methodology, not all of which can be corrected
by Primer ID. The 454 platform control experiments dem-
onstrated nearly 4-fold higher error rates within homopoly-
meric regions compared to heteropolymeric regions despite

Table 2. Percentage of K103N Detected in Primer ID Consensus and Raw Sequences

from Nine Replicates of One Subject Sample

Percentage and K103N

Replicate
Number of input

viral template
Number of

raw sequences
Number of

consensus sequences
In raw

sequences
In consensus sequences

(w/95% CI)

JKRT1 667 632,260 61 68% 69% (57–81%)
JKRT2 667 599,121 68 63% 68% (57–79%)
JKRT3 222 527,494 27 58% 56% (37–74%)
JKRT4 74 328,428 6 32% 33% (5–71%)
JKRT5 74 512,092 15 69% 60% (35–85%)
JKRT6 74 426,783 14 71% 57% (31–83%)
JKRT7 74 232,752 14 71% 71% (47–95%)
JKRT8 74 241,425 13 78% 62% (36–88%)
JKRT9 74 263,082 11 65% 64% (36–92%)
Total 2,000 3,763,437 229 64% 66% (58–70%)

Each replicate represents an independent cDNA synthesis reaction with a varying number of input HIV-1 RNA templates, estimated
using sample viral load: 2 of 667 copies, 1 of 222 copies, and 6 of 74 copies. The total percentage was calculated combining the number of
variants with mutations and the number of total sequences from all nine replicates.

CI, confidence interval.
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the use of three or more raw sequences with the same Primer
ID to create a consensus sequence. Intractable homopoly-
meric errors argue against using sequencing platforms that
are subject to these errors to estimate the prevalence of mi-
nority variants, especially those associated with homopoly-
meric regions such as variants with K103N and K65R.15,17,32

The Illumina MiSeq platform, which does not rely on the
incorporation of multiple nucleotides at a homopolymeric
stretch, eliminated homopolymer-associated errors in con-
trol experiments. However, this system has its own set
of limitations including the accumulation of errors over
the sequencing run,33 which was consistent with our own
control experiments, poor discrimination of highly similar
sequences,34 and predominance of errors in one strand of
the paired ends,34 also consistent with our results but poorly
understood. When Illumina was used to sequence samples
from a subset of subjects and compared to the 454 se-
quencing platform, concordance between the two platforms
was only 50% across all queried positions, suggesting either
substantial sequencing error or stochastic sampling, par-
ticularly associated with very low-abundance variants.
There is some evidence of a homopolymer-associated se-
quencing error, since nearly 40% of mutations detected
only by the 454 platform were near or within these sites. It is
also likely that many of the mutations detected by the
MiSeq platform alone were the result of sequencing error,
since all of these mutations were within the downstream
paired end, which is associated with a 3-fold increase in
error. However, it is not possible to rule out stochastic
sampling of the viral population as the source of the dis-
crepancy given the limited template usage revealed by the
use of Primer ID.

Our analysis of clinical subject samples was clearly limited
by the number of templates we sampled, and if sufficient
numbers of templates had been available (i.e., enough to give
1,000 or more consensus sequences) we could have queried
down to the 0.1–0.5% range, below which residual method
error still confounds the analysis. Although limited template
utilization was a problem in our analysis of these samples, it
was the use of Primer ID that revealed the extent of template
utilization and allowed us to estimate the quality of sampling.
Alternatively, if we had relied on the raw reads with an ar-
bitrary cut-off (1%), we would have not only overestimated
the prevalence of RT inhibitor resistance mutations, but we
would have also erroneously concluded that our sampling
depth was much higher for these samples given the number of
raw reads that passed quality filters (median > 2,000), and our
estimates of the frequency of resistance mutations in the viral
population would have been skewed upward by nearly 20%
compared to Primer ID. When we repeatedly sequenced the
same subject sample with a predominant homopolymer-as-
sociated K103N mutation, we observed close agreement in
relative abundance between Primer ID and raw consensus
sequences. However, Primer ID revealed the quality of
sampling that would have been masked by relying on re-
sampled raw sequences alone.

Even correction with Primer ID, including all resistance
mutations in estimates, i.e., even those that appear in only one
Primer ID consensus sequence, may fail to correct for errors
introduced during cDNA synthesis, which occur in the ear-
liest cycles of PCR amplification or which are homopolymer
associated. Unfortunately, downstream data filtering with

Primer ID cannot account for the first two of these biases, but
control experiments using DNA as the starting template did
demonstrate a substantial reduction in errors within homo-
polymeric regions.

In a separate deep sequencing study of homogeneous HIV
sequences in which virion RNA was used as the starting
template, cDNA synthesis introduced approximately one
error for every 10,000 bases sequenced (S. Zhou and R.
Swanstrom, unpublished observations). Sequencing errors
within the Primer ID itself cannot be ruled out either, and
these errors may be even more likely if the Primer ID itself
contains a homopolymeric sequence. In the worst case sce-
nario, a viral genome is linked to a homopolymeric Primer ID
and subsequently oversampled, such as might occur when the
number of input templates is low, and thus the number of
reads of each Primer ID is high. Because the original Primer
ID itself contains a homopolymeric sequence, it is more
likely to be misread repeatedly and in the same way by the
454 sequencing platform. In this manner, more than one
Primer ID may be linked to the same viral genome, and these
would be counted as separate viral genomes when collapsed
into separate consensus sequences. Most such Primer IDs are
unlikely to be abundant enough to be included in consensus
sequence assembly.

We assessed this type of error by building a tree of the
Primer ID sequences themselves. We found no evidence of
this type of oversampling in this dataset, although this type of
monitoring is likely to be an important feature of using Pri-
mer ID. Primer ID may also fail when there are ties in nu-
cleotide calls at a given position (ambiguity) among
resampled raw sequences, thus making it impossible to infer
the ‘‘real’’ viral sequence. This scenario is more likely to
occur when consensus sequences are constructed from a low
number of resampled raw sequences. Here, the number or raw
reads used to generate each consensus sequence was higher
than expected. For example, given 106 reads/454 FLX plate,
500 input cDNA for each of two amplicons, and 184 subjects,
we would expect each Primer ID consensus sequence to be
created from five or six resampled raw sequences on average.
Over both amplicons, a median of 12 resampled raw se-
quences (IQR: 6–24) was used to generate each Primer ID
consensus sequence. However, even with higher than ex-
pected output, we cannot exclude the contribution of platform
efficiency to our ability to sample rare variants.

Despite its limitations, Primer ID offers an opportunity to
make inferences about changes within the viral population
when multiple resistance mutations are present, assuming
that each unique Primer ID represents an individual viral
genome. Only three subjects had evidence of multiple resis-
tance mutations on non-homopolymer-associated codons,
one of whom was identified by bulk sequence analysis. Two
subjects had multiple, low-frequency NRTI resistance mu-
tations on separate Primer ID consensus sequences, which
could indicate past NRTI exposure followed by the re-
appearance of wild type from the subjects’ reservoirs. The
remaining subject had multiple, linked resistance mutations
(M41L + L74V + K101E and Y181C + G190S + T215Y/D/S)
that predominated in the Primer ID consensus sequences,
with evidence of reversion at codons 74 and 215. Previous
studies have shown that K101E + G190S reduce fitness
compared to wild-type virus in the absence of antiretroviral
therapy, but that the addition of M41L + T215Y or L74V
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in particular improves fitness without reducing NNRTI re-
sistance.35,36 In this subject it appears that T215Y is reverting
more rapidly than L74V given the higher frequency of se-
quences with T215 revertant mutations compared to L74
(21% vs. 6%), but we are limited in our conclusions since
these regions of RT were independently amplified and se-
quenced and thus for these different amplicons cannot be
linked.

Many studies, including a recent systematic review, have
linked minority pretherapy NNRTI resistance mutations with
an increased risk of virologic failure.37 Despite this evidence,
questions still remain surrounding the clinical importance of
minority drug-resistant variants, particularly with respect to
defining a specific abundance threshold at which resistance
mutations begin to affect the response to combination ther-
apy.13 Before any particular cut-off for clinical significance
can be determined, the drug-resistant viral population must
first be measured as accurately as possible. The most prom-
ising method with potential to move beyond the research
setting, ultradeep sequencing, still suffers from multiple
sources of error that are inherent in this method. In this study,
these errors and PCR resampling were addressed using the
Primer ID, which showed a 30-fold reduction in error rates
over raw sequence analyses and which, despite limited viral
template usage in clinical samples, still revealed additional
subjects with pretherapy resistance mutations. As important,
the use of Primer ID reveals the number of templates that
were actually sampled, thus providing an accurate assess-
ment of the quality of the sampling depth, an essential piece
of information when evaluating the meaning of the detection
of rare variants.
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