5 research outputs found

    Fatty acid 16:4(n-3) stimulates a GPR120-induced signaling cascade in splenic macrophages to promote chemotherapy resistance

    Get PDF
    Although chemotherapy is designed to eradicate tumor cells, it also has significant effects on normal tissues. The platinum-induced fatty acid 16:4(n-3) (hexadeca-4,7,10,13-tetraenoic acid) induces systemic resistance to a broad range of DNA-damaging chemotherapeutics. We show that 16:4(n-3) exerts its effect by activating splenic F4/80+/CD11blow macrophages, which results in production of chemoprotective lysophosphatidylcholines (LPCs). Pharmacologic studies, together with analysis of expression patterns, identified GPR120 on F4/80+/CD11blow macrophages as the relevant receptor for 16:4(n-3). Studies that used splenocytes from GPR120-deficient mice have confirmed this conclusion. Activation of the 16:4(n-3)-GPR120 axis led to enhanced cPLA2 activity in these splenic macrophages and secretion of the resistance-inducing lipid mediator, lysophosphatidylcholine(24:1). These studies identify a novel and unexpected function for GPR120 and suggest that antagonists of this receptor might be effective agents to limit development of chemotherapy resistance.—Houthuijzen, J. M., Oosterom, I., Hudson, B. D., Hirasawa, A., Daenen, L. G. M., McLean, C. M., Hansen, S. V. F., van Jaarsveld, M. T. M., Peeper, D. S., Jafari Sadatmand, S., Roodhart, J. M. L., van de Lest, C. H. A., Ulven, T., Ishihara, K., Milligan, G., Voest, E. E. Fatty acid 16:4(n-3) stimulates a GPR120-induced signaling cascade in splenic macrophages to promote chemotherapy resistance

    Tissue-Specific Chk1 Activation Determines Apoptosis by Regulating the Balance of p53 and p21

    No full text
    Summary: The DNA damage response (DDR) protects cells against genomic instability. Surprisingly, little is known about the differences in DDR across tissues, which may affect cancer evolutionary trajectories and chemotherapy response. Using mathematical modeling and quantitative experiments, we found that the DDR is regulated differently in human breast and lung primary cells. Equal levels of cisplatin-DNA lesions caused stronger Chk1 activation in lung cells, leading to resistance. In contrast, breast cells were more resistant and showed more Chk2 activation in response to doxorubicin. Further analyses indicate that Chk1 activity played a regulatory role in p53 phosphorylation, whereas Chk2 activity was essential for p53 activation and p21 expression. We propose a novel “friction model,” in which the balance of p53 and p21 levels contributes to the apoptotic response in different tissues. Our results suggest that modulating the balance of p53 and p21 dynamics could optimize the response to chemotherapy. : Bioinformatics; Mathematical Biosciences; Systems Biology; Cancer Systems Biology Subject Areas: Bioinformatics, Mathematical Biosciences, Systems Biology, Cancer Systems Biolog

    Expression data from breast cancer cell lines

    No full text
    Breast cancer is a genetically and phenotypically complex disease. To understand the role of microRNAs in this molecular complexity, we performed miRNA expression analysis in a cohort of molecularly well-characterized human breast cancer (BC) cell lines to discover miRNAs associated with the most common molecular subtypes and the most frequent genetic aberrations.Using a microarray carrying LNA™ modified oligonucleotide capture probes (Exiqon), expression levels of 725 human miRNAs were measured in 51 BC cell lines. MiRNA expression was explored by unsupervised cluster analysis and then associated with the molecular subtypes and genetic aberrations commonly present in breast cancer. Unsupervised cluster analysis using the most variably expressed miRNAs divided the 51 BC cell lines into a major and a minor cluster predominantly mirroring the luminal and basal intrinsic subdivision of BC cell lines. One hundred and thirteen miRNAs were differentially expressed between these two main clusters of which half were related to the ER-status of the cell lines. Forty miRNAs were differentially expressed between basal-like and normal-like/claudin-low cell lines. Within the luminal-group of cell lines, 39 miRNAs were associated with ERBB2 overexpression and 24 miRNAs with E-cadherin gene mutations, which are frequent in this subtype of BC cell lines. In contrast, 31 different miRNAs were associated with E-cadherin promoter hypermethylation, which, contrary to E-cadherin mutation, is exclusively observed in BC cell lines that are not of luminal origin. The differential expression of 30 miRNAs were associated with p16INK4 status while only a few differentially expressed miRNAs were associated with BRCA1, or PIK3CA/PTEN, TP53 mutation status of the cell lines (P-value < 0.05). Twelve miRNAs were associated with DNA copy number variation of the respective locus. Luminal-basal and epithelial-mesenchymal associated miRNAs determine the overall subdivision of miRNA transcriptome of BC cell lines. Specific sets of miRNAs were associated with ERBB2 overexpression, p16INK4aor E-cadherin mutation or E-cadherin methylation status, which implies that these miRNAs may contribute to the driver role of the genetic aberrations. Additionally, miRNAs, which are located in a genomic region showing recurrent genetic aberrations, may themselves play a driver role in breast carcinogenesis or contribute to a driver gene in their vicinity. In short, our study provides detailed molecular miRNA portraits of BC cell lines, which can be exploited for functional studies of clinically important miRNAs. Affymetrix plus2PM arrays were hybridized according to the manufacturer's procedure using RNA extracted from 52 cultured breast cancer cell lines. Most cellines were analyzed in triplicate. Gene expression data in log2 scale arrays were calculated and associated with diverse characteristics. This submission represents the gene expression component of the study onl

    Expression data from breast cancer cell lines

    No full text
    Breast cancer is a genetically and phenotypically complex disease. To understand the role of microRNAs in this molecular complexity, we performed miRNA expression analysis in a cohort of molecularly well-characterized human breast cancer (BC) cell lines to discover miRNAs associated with the most common molecular subtypes and the most frequent genetic aberrations.Using a microarray carrying LNA™ modified oligonucleotide capture probes (Exiqon), expression levels of 725 human miRNAs were measured in 51 BC cell lines. MiRNA expression was explored by unsupervised cluster analysis and then associated with the molecular subtypes and genetic aberrations commonly present in breast cancer. Unsupervised cluster analysis using the most variably expressed miRNAs divided the 51 BC cell lines into a major and a minor cluster predominantly mirroring the luminal and basal intrinsic subdivision of BC cell lines. One hundred and thirteen miRNAs were differentially expressed between these two main clusters of which half were related to the ER-status of the cell lines. Forty miRNAs were differentially expressed between basal-like and normal-like/claudin-low cell lines. Within the luminal-group of cell lines, 39 miRNAs were associated with ERBB2 overexpression and 24 miRNAs with E-cadherin gene mutations, which are frequent in this subtype of BC cell lines. In contrast, 31 different miRNAs were associated with E-cadherin promoter hypermethylation, which, contrary to E-cadherin mutation, is exclusively observed in BC cell lines that are not of luminal origin. The differential expression of 30 miRNAs were associated with p16INK4 status while only a few differentially expressed miRNAs were associated with BRCA1, or PIK3CA/PTEN, TP53 mutation status of the cell lines (P-value < 0.05). Twelve miRNAs were associated with DNA copy number variation of the respective locus. Luminal-basal and epithelial-mesenchymal associated miRNAs determine the overall subdivision of miRNA transcriptome of BC cell lines. Specific sets of miRNAs were associated with ERBB2 overexpression, p16INK4aor E-cadherin mutation or E-cadherin methylation status, which implies that these miRNAs may contribute to the driver role of the genetic aberrations. Additionally, miRNAs, which are located in a genomic region showing recurrent genetic aberrations, may themselves play a driver role in breast carcinogenesis or contribute to a driver gene in their vicinity. In short, our study provides detailed molecular miRNA portraits of BC cell lines, which can be exploited for functional studies of clinically important miRNAs. Affymetrix plus2PM arrays were hybridized according to the manufacturer's procedure using RNA extracted from 52 cultured breast cancer cell lines. Most cellines were analyzed in triplicate. Gene expression data in log2 scale arrays were calculated and associated with diverse characteristics. This submission represents the gene expression component of the study onl
    corecore