27 research outputs found

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Pro-survival pathways in triple negative breast cancer: Focus on the roles of RIP2 and HSPB1

    Get PDF
    Triple negative breast cancers (TNBC) lack estrogen and progesterone receptors, and HER-2 markers rendering them resistant to current targeted therapies. Most TNBCs show basal-like characteristics and the terms TNBC and basal-like breast cancer (BC) are used interchangeably. Both have high histological grade, characterized by exceptionally high mitotic indices, and the presence of central necrotic or fibrotic zones. Also, they have been reported to overexpress anti-apoptotic proteins, such as inhibitors of apoptosis proteins (IAPs), and release growth factors and cytokines that are important for pro-survival signaling and enhance carcinogenesis. Understanding the mechanism and role of these proteins in breast cancer would help develop effective and targeted therapy. In Chapter 1 of this thesis, proteins essential for the induction of survival pathways were identified and their relative messenger ribonucleic acid (mRNA) expression was analyzed among different (BC) patient samples obtained from online GEO NCBI. This is the first study that comprises expression analyses of different isoforms of mRNA expression of genes important in pro-survival pathways regulation, to understand basal-like BC tumourigenesis, and determine main proteins involved in BC prognosis and identify potential therapy targets. mRNA expression of genes involved in the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the heat shock response (HSR) pathways were found to be most associated with TNBC subtype, and the mRNA expression of genes involved in these pathways were found to be correlated with tumour size, tumour grade and worse prognosis. In addition, the genes involved in these pathways were highly expressed in patient samples of basal-like or TNBC subtypes and positively correlated with mRNA gene expression of TP53 and the proliferation marker MKI-67. Interestingly, the NF-κB pathway related genes’ mRNA expression was highly correlated with TP53 and MKI-67 mRNA expression in the basal-like BC subtype. Therefore, MDA-MB-231 cell line was used in order to understand the involvement of the NF-κB pathway and HSR in TNBC. In Chapter 2 of this thesis, the role of receptor interacting serine/threonine protein kinase 2 (RIP2) in enhancing BC development was studied. RIP2 protein has been reported to increase NF-κB activation and have a role in increasing cell proliferation and survival. It has been reported to associate with TNBC enhancing metastasis. Therefore, the role of RIP2 protein in TNBC was studied. An anti-apoptotic role of RIP2 in TNBC via activation of NF-κB was demonstrated. It is well known that NF-κB signaling mediates cancer cell proliferation and protects breast cancer cells from apoptosis. Therefore, targeting RIP2 could potentially sensitize cells to therapeutic agents. In this study, inactive mutant forms of RIP2 or shRNA against RIP2 sensitized TNBC cells to apoptosis. Anti-apoptotic proteins 13 expression levels, such as, B-cell lymphoma 2 (Bcl-2), B-cell lymphoma 2-extra large (Bcl- xL), and IAPs, increased upon RIP2 overexpression in MDA-MB-231 cells. This overexpression of anti-apoptitic proteins might explain the resistance of TNBC to drug induced cell death. Upon inhibition of NF-κB, the expression of anti-apoptotic proteins enhanced by RIP2 was reduced, and the cells were sensitized to drug treatment. RIP2 also mediated the release of cytokines and growth factors from these cells. Released factors include interleukin (IL) IL-6, IL-8, vascular endothelial growth factor (VEGF) and (C-X-C motif) ligand 1 (CXCL-1). These results were confirmed by data analysis of patients’ breast cancer databases, where high RIP2 expression was associated with poor prognosis, and decreased survival of patients. RIP2 expression was also associated with TNBC subtype; in addition, it was correlated with high mRNA expression of Bcl-xL, X-linked inhibitor of apoptosis protein (XIAP) and cellular inhibitor of apoptosis protein (cIAP) anti-apoptotic proteins and IL-6, tumour growth factor (TGF) and VEGF released factors. The last section of the thesis focused on the role of intracellular chaperone heat shock proteins (HSPs), HSPB1 and HSPA1in TNBC pro-survival signaling. HSPB1 belongs to the family of small HSPs and is a potent regulator of apoptosis. However, the role of HSPB1 in endoplasmic reticulum (ER) stress induced apoptosis has not been defined. Previous work in the lab showed that heat shock could protect cells from ER stress induced cell death. Treating cells with ER stress inducing drugs did not affect HSPB1 or HSPA1 expression, and neither phosphorylation level of HSPB1 in different TNBC cell lines. Therefore, a crosstalk between ER stress and HSR pathways in TNBC was not observed. An interesting finding was the release of non-phosphorylated form on HSPB1 into culture media of MDA-MB-231 and MDA-MB-453 cells. Neutralizing HSPB1 by treating culture media with anti-HSPB1 antibody did not show any effect on cell survival, resistance to drug treatments or cell migration.2018-11-0

    Pro-survival pathways in triple negative breast cancer: Focus on the roles of RIP2 and HSPB1

    Get PDF
    Triple negative breast cancers (TNBC) lack estrogen and progesterone receptors, and HER-2 markers rendering them resistant to current targeted therapies. Most TNBCs show basal-like characteristics and the terms TNBC and basal-like breast cancer (BC) are used interchangeably. Both have high histological grade, characterized by exceptionally high mitotic indices, and the presence of central necrotic or fibrotic zones. Also, they have been reported to overexpress anti-apoptotic proteins, such as inhibitors of apoptosis proteins (IAPs), and release growth factors and cytokines that are important for pro-survival signaling and enhance carcinogenesis. Understanding the mechanism and role of these proteins in breast cancer would help develop effective and targeted therapy. In Chapter 1 of this thesis, proteins essential for the induction of survival pathways were identified and their relative messenger ribonucleic acid (mRNA) expression was analyzed among different (BC) patient samples obtained from online GEO NCBI. This is the first study that comprises expression analyses of different isoforms of mRNA expression of genes important in pro-survival pathways regulation, to understand basal-like BC tumourigenesis, and determine main proteins involved in BC prognosis and identify potential therapy targets. mRNA expression of genes involved in the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the heat shock response (HSR) pathways were found to be most associated with TNBC subtype, and the mRNA expression of genes involved in these pathways were found to be correlated with tumour size, tumour grade and worse prognosis. In addition, the genes involved in these pathways were highly expressed in patient samples of basal-like or TNBC subtypes and positively correlated with mRNA gene expression of TP53 and the proliferation marker MKI-67. Interestingly, the NF-κB pathway related genes’ mRNA expression was highly correlated with TP53 and MKI-67 mRNA expression in the basal-like BC subtype. Therefore, MDA-MB-231 cell line was used in order to understand the involvement of the NF-κB pathway and HSR in TNBC. In Chapter 2 of this thesis, the role of receptor interacting serine/threonine protein kinase 2 (RIP2) in enhancing BC development was studied. RIP2 protein has been reported to increase NF-κB activation and have a role in increasing cell proliferation and survival. It has been reported to associate with TNBC enhancing metastasis. Therefore, the role of RIP2 protein in TNBC was studied. An anti-apoptotic role of RIP2 in TNBC via activation of NF-κB was demonstrated. It is well known that NF-κB signaling mediates cancer cell proliferation and protects breast cancer cells from apoptosis. Therefore, targeting RIP2 could potentially sensitize cells to therapeutic agents. In this study, inactive mutant forms of RIP2 or shRNA against RIP2 sensitized TNBC cells to apoptosis. Anti-apoptotic proteins 13 expression levels, such as, B-cell lymphoma 2 (Bcl-2), B-cell lymphoma 2-extra large (Bcl- xL), and IAPs, increased upon RIP2 overexpression in MDA-MB-231 cells. This overexpression of anti-apoptitic proteins might explain the resistance of TNBC to drug induced cell death. Upon inhibition of NF-κB, the expression of anti-apoptotic proteins enhanced by RIP2 was reduced, and the cells were sensitized to drug treatment. RIP2 also mediated the release of cytokines and growth factors from these cells. Released factors include interleukin (IL) IL-6, IL-8, vascular endothelial growth factor (VEGF) and (C-X-C motif) ligand 1 (CXCL-1). These results were confirmed by data analysis of patients’ breast cancer databases, where high RIP2 expression was associated with poor prognosis, and decreased survival of patients. RIP2 expression was also associated with TNBC subtype; in addition, it was correlated with high mRNA expression of Bcl-xL, X-linked inhibitor of apoptosis protein (XIAP) and cellular inhibitor of apoptosis protein (cIAP) anti-apoptotic proteins and IL-6, tumour growth factor (TGF) and VEGF released factors. The last section of the thesis focused on the role of intracellular chaperone heat shock proteins (HSPs), HSPB1 and HSPA1in TNBC pro-survival signaling. HSPB1 belongs to the family of small HSPs and is a potent regulator of apoptosis. However, the role of HSPB1 in endoplasmic reticulum (ER) stress induced apoptosis has not been defined. Previous work in the lab showed that heat shock could protect cells from ER stress induced cell death. Treating cells with ER stress inducing drugs did not affect HSPB1 or HSPA1 expression, and neither phosphorylation level of HSPB1 in different TNBC cell lines. Therefore, a crosstalk between ER stress and HSR pathways in TNBC was not observed. An interesting finding was the release of non-phosphorylated form on HSPB1 into culture media of MDA-MB-231 and MDA-MB-453 cells. Neutralizing HSPB1 by treating culture media with anti-HSPB1 antibody did not show any effect on cell survival, resistance to drug treatments or cell migration.2018-11-0

    RIP2 enhances cell survival by activation of NF-ĸB in triple negative breast cancer cells

    Get PDF
    Receptor-interacting protein 2 (RIP2) is an essential mediator of inflammation and innate immunity, but little is known about its role outside the immune system. Recently, RIP2 has been linked to chemoresistance of triple negative breast cancer (TNBC), the most aggressive breast cancer subtype for which there is an urgent need for targeted therapies. In this study we show that high expression of RIP2 in breast tumors correlates with a worse prognosis and a higher risk of recurrence. We also demonstrate that RIP2 confers TNBC cell resistance against paclitaxel and ceramide-induced apoptosis. Over expression of RIP2 lead to NF-kappa B activation, which contributed to higher expression of pro-survival proteins and cell survival. Conversely, RIP2 knockdown inhibited NF-kappa B signaling, reduced levels of anti-apoptotic proteins and sensitized cells to drug treatment. Together, these data show that RIP2 promotes survival of breast cancer cells through NF-kappa B activation and that targeting RIP2 may be therapeutically beneficial for treatment of TNBC. (C) 2018 Published by Elsevier Inc.We thank the following for kindly providing plasmids: Dr. J.V. McCarthy, University College Cork, Ireland for the plasmid expressing WT RIP2, Prof. J. Tschopp, University of Lausanne, Switzerland for the DN RIP2 plasmid, and Dr. A. Ryan, NUI Galway for the NF-κB super-repressor plasmid. The work in our group is funded by Breast Cancer Now (formerly Breast Cancer Campaign, grant numbers 2010NovPR13, 2008NovPhD21 and 2015MaySP550), Health Research Board (grant number HRA-POR-2014-643), Belgium Grant (IAP 7/32), a Science Foundation Ireland grant co-funded under the European Regional Development Fund (grant Number 13/RC/2073) and EU H2020MSCA ETN-675448 (TRAINERS), MSCA-RISE-2016-734749 (INSPIRED), the Irish Research Council (RS/2012/255 and GOIPD/2014/53), Clinical Research Development Ireland (formerly Molecular Medicine Ireland, Clinical and Translational Research Scholars Programme), Enterprise Ireland (IP 2016 0510), Science Foundation Ireland Starting Investigator Research Grant (15/SIRG/3528), Thomas Crawford Hayes Fund (NUI Galway) and College of Science, NUI Galway.peer-reviewed2019-02-0

    Receptor-Interacting Serine/Threonine-Protein Kinase-2 as a Potential Prognostic Factor in Colorectal Cancer

    No full text
    Background and objectives: Receptor-interacting serine/threonine-protein kinase-2 (RIPK2) is an important mediator in different pathways in the immune and inflammatory response system. RIPK2 was also shown to play different roles in different cancer types; however, in colorectal cancer (CRC), its role is not well established. This study aims at identifying the role of RIPK2 in CRC progression and survival. Materials and methods: Data of patients and mRNA protein expression level of genes associated with CRC (RIPK2, tumor necrosis factor (TNF), TRAF1, TRAF7, KLF6, interlukin-6 (Il6), interlukin-8 (Il8), vascular-endothelial growth factor A (VEGFA), MKI67, TP53, nuclear factor-kappa B (NFKB), NFKB2, BCL2, XIAP, and RELA) were downloaded from the PrognoScan online public database. Patients were divided between low and high RIPK2 expression and different CRC characteristics were studied between the two groups. Survival curves were evaluated using a Kaplan–Meier estimator. The Pearson correlation was used to study the correlation between RIPK2 and the other factors. Statistical analysis was carried out using SPSS version 25.0. The Human Protein Atlas was also used for the relationship between RIPK2 expression in CRC tissues and survival. Differences were considered statistically significant at p &lt; 0.05. Results: A total of 520 patients were downloaded from the PrognoScan database, and RIPK2 was found to correlate with MKI67, TRAF1, KLF6, TNF, Il6, Il8, VEGFA, NFKB2, BCL2, and RELA. High expression of RIPK2 was associated with high expression of VEGFA (p &lt; 0.01) and increased mortality (p &lt; 0.01). Conclusions: In this study, RIPK2 is shown to be a potential prognostic factor in CRC; however, more studies are needed to assess and verify its potential role as a prognostic marker and in targeted therapy

    Prevalence of Insomnia among Pancreatic Cancer Patients following Pancreaticoduodenectomy

    No full text
    Introduction. Sleep disturbances are more common in cancer patients than in the general population; however, there is limited research pertaining to the occurrence of such disturbances that subsequently impact patients’ quality of life. The aim of our study is to describe the prevalence of insomnia among pancreatic cancer patients who have recently undergone recent pancreaticoduodenectomy. Methods. We performed a 6-year (2014-2020) retrospective cohort analysis of all adult patients aged 18 and above with pancreatic cancer who underwent pancreaticoduodenectomy at our institution. Insomnia was characterized using the Pittsburgh Sleep Quality Index (PSQI). Symptoms of insomnia and the impact caused by these symptoms on daily lives were assessed with the Insomnia Severity Index (ISI), and patients were divided into mild insomnia (ISI 8–14) or moderate to severe insomnia (ISI≥15). Results. Out of forty patients with pancreatic cancer that have undergone pancreaticoduodenectomy, 19 (47.2%) reported that their sleep disturbances had a significant effect on their quality of life. A total of 22 (55.0%) patients reported insomnia, with 63.2% reporting mild insomnia. Chemotherapy was found to significantly increase the risk of moderate to severe insomnia. The mean ISI score was 7.2±6.9, and the mean PSQI score was 7.0±5.1. ISI and PSQI showed a strong positive correlation (r=0.78, p<0.01). Conclusion. Sleep disturbances such as insomnia following pancreatic cancer surgery are highly prevalent. Treating physicians and surgeons should recognize and routinely screen for sleep disorders through the management of a multidisciplinary team in order to alleviate some of the burden on the patients’ mental well-being

    Triple Negative Breast Cancer: Updates on Classification and Treatment in 2021

    No full text
    Breast cancer (BC) is the most common malignancy affecting women. It is a highly heterogeneous disease broadly defined by the differential expression of cell surface receptors. In the United States, triple negative breast cancer (TNBC) represents 15 to 20% of all BC. When compared with other subtypes of BC, TNBC tends to present in younger women, and has a higher mortality rate of 40% in advanced stages within the first 5 years after diagnosis. TNBC has historically had limited treatment options when compared to other types of BC. The mainstay of treatment for TNBC remains cytotoxic chemotherapy despite the emergence of new biologic and targeted agents. Defining the specific tumor molecular profile including PDL-1 and androgen receptor testing is expanding treatment options in the clinical setting. Identifying more targetable, novel biomarkers that may better define therapeutic targets or prognostic markers is currently underway. TNBC nomenclature is expected to be updated in favor of other nomenclature which would help direct therapy, and further redefine TNBC’s heterogeneity. Given the continuous advances in the field of TNBC, this review assesses the latest developments in basic characterization, subtyping, and treatment of TNBC, including novel drug developments with antibody-drug conjugates, immune checkpoint inhibitors, PARP inhibitors and androgen receptor targeted agents. Future trials are necessary in the face of these innovations to further support the use of new therapies in TNBC and the detection of the appropriate biomarkers

    Evaluation of a Multilocus Variable-Number Tandem-Repeat Analysis Scheme for Typing Human Brucella Isolates in a Region of Brucellosis Endemicity▿ †

    No full text
    Brucellosis remains an important anthropozoonosis worldwide. Brucella species are genetically homogeneous, and thus, the typing of Brucella species for epidemiological purposes by conventional molecular typing methods has remained elusive. Although many methods could segregate isolates into the phylogenetically recognized taxa, limited within-species genetic diversity has been identified. Recently, multilocus variable-number tandem-repeat analysis (MLVA) was found to have a high degree of resolution when it was applied to collections of Brucella isolates from geographically widespread locations, and an assay comprising 16 such loci (MLVA-16) was proposed. This scheme includes eight minisatellite loci (panel 1) and eight microsatellites (panel 2, which is subdivided into panels 2A and 2B). The utility of MLVA-16 for the subtyping of human Brucella isolates from geographically restricted regions needs to be further evaluated, and genotyping databases with worldwide coverage must be progressively established. In the present study, MLVA-16 was applied to the typing of 42 human Brucella isolates obtained from 41 patients recovered from 2002 to 2006 at a tertiary-care center in Lebanon. All isolates were identified as Brucella melitensis by MLVA-16 and were found to be closely related to B. melitensis isolates from neighboring countries in the Middle East when their genotypes were queried against those in the web-based Brucella2007 MLVA database (http://mlva.u-psud.fr/). Panel 2B, which comprised the most variable loci, displayed a very high discriminatory power, while panels 1 and 2A showed limited diversity. The most frequent genotype comprised seven isolates obtained over 7 weeks in 2002, demonstrating an outbreak from a common source. Two isolates obtained from one patient 5 months apart comprised another genotype, indicating relapsing disease. These findings confirm that MLVA-16 has a good discriminatory power for species determination, typing of B. melitensis isolates, and inferring their geographical origin. Abbreviated panel 2B could be used as a short-term epidemiological tool in a small region of endemicity
    corecore