236 research outputs found
On the Gain and Link Equation for Reactive Millimetre-wave Surface Wave Propagation System
Surface-wave has been proven to be the third option between wired and wireless communication. It has been proposed to be utilised for inter-machine and on-body communications, because of its on-surface two-dimensional feature. It provides a flexible two-dimensional platform and shows many advantages such as power savings, excellent electromagnetic compatibility characteristic, non-line-of-sight communication over traditional space wave wireless communication systems. When compared to wired systems, surface wave systems can provide a wide band channel for one-to-many/many-to-one communications. This work we will demonstrate our recent work in the concept of surface wave gain and formulate the surface wave wireless link equation for the first time. A 52 GHz 3-dB bandwidth test bed was constructed to validate the theoretical and simulation results in the proposed method and equation
Caspase-2 is upregulated after sciatic nerve transection and its inhibition protects dorsal root ganglion neurons from Apoptosis after serum withdrawal
Sciatic nerve (SN) transection-induced apoptosis of dorsal root ganglion neurons (DRGN) is one factor determining the efficacy of peripheral axonal regeneration and the return of sensation. Here, we tested the hypothesis that caspase-2(CASP2) orchestrates apoptosis of axotomised DRGN both in vivo and in vitro by disrupting the local neurotrophic supply to DRGN. We observed significantly elevated levels of cleaved CASP2 (C-CASP2), compared to cleaved caspase-3 (C-CASP3), within TUNEL+DRGN and DRG glia (satellite and Schwann cells) after SN transection. A serum withdrawal cell culture model, which induced 40% apoptotic death in DRGN and 60% in glia, was used to model DRGN loss after neurotrophic factor withdrawal. Elevated C-CASP2 and TUNEL were observed in both DRGN and DRG glia, with C-CASP2 localisation shifting from the cytosol to the nucleus, a required step for induction of direct CASP2-mediated apoptosis. Furthermore, siRNAmediated downregulation of CASP2 protected 50% of DRGN from apoptosis after serum withdrawal, while downregulation of CASP3 had no effect on DRGN or DRG glia survival. We conclude that CASP2 orchestrates the death of SN-axotomised DRGN directly and also indirectly through loss of DRG glia and their local neurotrophic factor support. Accordingly, inhibiting CASP2 expression is a potential therapy for improving both the SN regeneration response and peripheral sensory recovery
Mid-mantle deformation inferred from seismic anisotropy
With time, convective processes in the Earth's mantle will tend to align crystals, grains and inclusions. This mantle fabric is detectable seismologically, as it produces an anisotropy in material propertiesβin particular, a directional dependence in seismic-wave velocity. This alignment is enhanced at the boundaries of the mantle where there are rapid changes in the direction and magnitude of mantle flow, and therefore most observations of anisotropy are confined to the uppermost mantle or lithosphere and the lowermost-mantle analogue of the lithosphere, the D" region. Here we present evidence from shear-wave splitting measurements for mid-mantle anisotropy in the vicinity of the 660-km discontinuity, the boundary between the upper and lower mantle. Deep-focus earthquakes in the TongaβKermadec and New Hebrides subduction zones recorded at Australian seismograph stations record some of the largest values of shear-wave splitting hitherto reported. The results suggest that, at least locally, there may exist a mid-mantle boundary layer, which could indicate the impediment of flow between the upper and lower mantle in this region
Lattice Boltzmann simulations of soft matter systems
This article concerns numerical simulations of the dynamics of particles
immersed in a continuum solvent. As prototypical systems, we consider colloidal
dispersions of spherical particles and solutions of uncharged polymers. After a
brief explanation of the concept of hydrodynamic interactions, we give a
general overview over the various simulation methods that have been developed
to cope with the resulting computational problems. We then focus on the
approach we have developed, which couples a system of particles to a lattice
Boltzmann model representing the solvent degrees of freedom. The standard D3Q19
lattice Boltzmann model is derived and explained in depth, followed by a
detailed discussion of complementary methods for the coupling of solvent and
solute. Colloidal dispersions are best described in terms of extended particles
with appropriate boundary conditions at the surfaces, while particles with
internal degrees of freedom are easier to simulate as an arrangement of mass
points with frictional coupling to the solvent. In both cases, particular care
has been taken to simulate thermal fluctuations in a consistent way. The
usefulness of this methodology is illustrated by studies from our own research,
where the dynamics of colloidal and polymeric systems has been investigated in
both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures,
76 page
Identification of Piwil2-Like (PL2L) Proteins that Promote Tumorigenesis
PIWIL2, a member of PIWI/AGO gene family, is expressed in the germline stem cells (GSCs) of testis for gametogenesis but not in adult somatic and stem cells. It has been implicated to play an important role in tumor development. We have previously reported that precancerous stem cells (pCSCs) constitutively express Piwil2 transcripts to promote their proliferation. Here we show that these transcripts de facto represent Piwil2-like (PL2L) proteins. We have identified several PL2L proteins including PL2L80, PL2L60, PL2L50 and PL2L40, using combined methods of Gene-Exon-Mapping Reverse Transcription Polymerase Chain Reaction (GEM RT-PCR), bioinformatics and a group of novel monoclonal antibodies. Among them, PL2L60 rather than Piwil2 and other PL2L proteins is predominantly expressed in various types of human and mouse tumor cells. It promotes tumor cell survival and proliferation in vitro through up-regulation of Stat3 and Bcl2 gene expressions, the cell cycle entry from G0/1 into S-phase, and the nuclear expression of NF-ΞΊB, which contribute to the tumorigenicity of tumor cells in vivo. Consistently, PL2L proteins rather than Piwil2 are predominantly expressed in the cytoplasm or cytoplasm and nucleus of euchromatin-enriched tumor cells in human primary and metastatic cancers, such as breast and cervical cancers. Moreover, nuclear PL2L proteins are always co-expressed with nuclear NF-ΞΊB. These results reveal that PL2L60 can coordinate with NF-ΞΊB to promote tumorigenesis and might mediate a common pathway for tumor development without tissue restriction. The identification of PL2L proteins provides a novel insight into the mechanisms of cancer development as well as a novel bridge linking cancer diagnostics and anticancer drug development
High TWIST1 mRNA expression is associated with poor prognosis in lymph node-negative and estrogen receptor-positive human breast cancer and is co-expressed with stromal as well as ECM related genes
Introduction: The TWIST homolog 1 (TWIST1) is a transcription factor that induces epithelial to mesenchymal transition (EMT), a key process in metastasis. The purpose of this study was to investigate whether TWIST1 expression predicts disease progression in a large breast cancer cohort with long-term clinical follow-up, and to reveal the biology related to TWIST1 mediated disease progression.Methods: TWIST1 mRNA expression level was analyzed by quantitative real-time reverse polymerase chain reaction (RT-PCR) in 1,427 primary breast cancers. In uni- and multivariate analysis using Cox regression, TWIST1 mRNA expression level was associated with metastasis-free survival (MFS), disease-free survival (DFS) and overall survival (OS). Separate analyses in lymph node-negative patients (LNN, n = 778) who did not receive adjuvant systemic therapy, before and after stratification into estrogen receptor (ER)-positive (n = 552) and ER-negative (n = 226) disease, were also performed. The association of TWIST1 mRNA with survival endpoints was assessed using Kaplan-Meier analysis. Using gene expression arrays, genes showing a significant Spearman rank correlation with TWIST1 were used to identify overrepresented Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)-annotated biological pathways.Results: Increased mRNA expression level of TWIST1 analyzed as a continuous variable in both uni- and multivariate analysis was associated with shorter MFS in all patients (hazard ratio (HR): 1.17, 95% confidence interval, (95% CI):1.09 to 1.26; and HR: 1.17, 95% CI: 1.08 to 1.26; respectively), in LNN patients (HR: 1.22, 95% CI: 1.09 to 1.36; and HR: 1.21, 95% CI: 1.07 to 1.36; respectively) and in the ER-positive subgroup of LNN patients (HR: 1.34, 95% CI: 1.17 to 1.53; and HR: 1.32, 95% CI: 1.14 to 1.53; respectively). Similarly, high TWIST1 expression was associated with shorter DFS and OS in all patients and in the LNN/ER-positive subgroup. In contrast, no association of TWIST1 mRNA expression with MFS, DFS or OS was observed in ER-negative patients. Genes h
Single-Cell Profiling Reveals the Origin of Phenotypic Variability in Adipogenesis
Phenotypic heterogeneity in a clonal cell population is a well-observed but poorly understood phenomenon. Here, a single-cell approach is employed to investigate non-mutative causes of phenotypic heterogeneity during the differentiation of 3T3-L1 cells into fat cells. Using coherent anti-Stokes Raman scattering microscopy and flow cytometry, adipogenic gene expression, insulin signaling, and glucose import are visualized simultaneously with lipid droplet accumulation in single cells. Expression of adipogenic genes PPARΞ³, C/EBPΞ±, aP2, LP2 suggests a commitment to fat cell differentiation in all cells. However, the lack of lipid droplet in many differentiating cells suggests adipogenic gene expression is insufficient for lipid droplet formation. Instead, cell-to-cell variability in lipid droplet formation is dependent on the cascade responses of an insulin signaling pathway which includes insulin sensitivity, kinase activity, glucose import, expression of an insulin degradation enzyme, and insulin degradation rate. Increased and prolonged insulin stimulation promotes lipid droplet accumulation in all differentiating cells. Single-cell profiling reveals the kinetics of an insulin signaling cascade as the origin of phenotypic variability in drug-inducible adipogenesis
Precore Mutation of Hepatitis B Virus May Contribute to Hepatocellular Carcinoma Risk: Evidence from an Updated Meta-Analysis
BACKGROUND: Studies focused on the correlation of mutations in the genome of Hepatitis B Virus (HBV) like Pre-S mutation, Basal Core promoter (BCP), Enhancer II (EnhII), especially Precore mutation, with the risk of hepatocellular carcinoma (HCC) have triggered stiff controversies. With an increasing number of studies in this field recently, we conducted this meta-analysis to appraise the correlations. METHODS: We searched the commonly used databases both in English and Chinese till February 1(st), 2012. Meta-analysis was performed in fixed/random-effects models using STATA 10.0. Publication bias was examined through Egger's test and Begg's funnel plot. RESULTS: In total, 85 case-control studies were included involving 16745 HBV-infected patients, of whom 5781 had HCC. Statistically significant correlations were observed in Precore mutation G1896A (OR = 1.46, 95% confidence interval [CI] = 1.15-1.85, P(OR) = 0.002), G1899A (OR = 3.13, 95%CI = 2.38-4.13, P(OR)<0.001) and Pre-S mutation especially Pre-S1 deletion (OR = 2.94, 95%CI = 2.22 to 3.89) and Pre-S2 deletion (OR = 3.02, 95%CI = 2.03 to 4.50). Similar correlation existed between BCP double mutation A1762T/G1764A, T1753V, C1653T and HCC. In subgroup analysis, the Asians, genotype C or HBeAg positive patients with certain above mutations may be more susceptible to HCC. Besides, the mutations like G1896A and BCP double mutation may be associated with the progression of the liver diseases. CONCLUSIONS: Precore mutation G1896A, G1899A, deletions in Pre-S region as well as the other commonly seen mutations correlated with the increased risk of HCC, especially in Asians and may predict the progression of the liver disease
International expert consensus on the management of bleeding during VATS lung surgery
Intraoperative bleeding is the most crucial safety concern of video-assisted thoracic surgery (VATS) for a major pulmonary resection. Despite the advances in surgical techniques and devices, intraoperative bleeding is still not rare and remains the most common and potentially fatal cause of conversion from VATS to open thoracotomy. Therefore, to guide the clinical practice of VATS lung surgery, we proposed the International Interest Group on Bleeding during VATS Lung Surgery with 65 experts from 10 countries in the field to develop this consensus document. The consensus was developed based on the literature reports and expert experience from different countries. The causes and incidence of intraoperative bleeding were summarised first. Seven situations of intraoperative bleeding were collected based on clinical practice, including the bleeding from massive vessel injuries, bronchial arteries, vessel stumps, and bronchial stumps, lung parenchyma, lymph nodes, incisions, and the chest wall. The technical consensus for the management of intraoperative bleeding was achieved on these seven surgical situations by six rounds of repeated revision. Following expert consensus statements were achieved: (I) Bleeding from major vascular injuries: direct compression with suction, retracted lung, or rolled gauze is useful for bleeding control. The size and location of the vascular laceration are evaluated to decide whether the bleeding can be stopped by direct compression or by ligation. If suturing is needed, the suction-compressing angiorrhaphy technique (SCAT) is recommended. Timely conversion to thoracotomy with direct compression is required if the operator lacks experience in thoracoscopic angiorrhaphy. (II) Bronchial artery bleeding: pre-emptive clipping of bronchial artery before bronchial dissection or lymph node dissection can reduce the incidence of bleeding. Bronchial artery bleeding can be stopped by compression with the suction tip, followed by the handling of the vascular stump with energy devices or clips. (III) Bleeding from large vessel stumps and bronchial stumps: bronchial stump bleeding mostly comes from accompanying bronchial artery, which can be clipped for hemostasis. Compression for hemostasis is usually effective for bleeding at the vascular stump. Otherwise, additional use of hemostatic materials, re-staple or a suture may be necessary. (IV) Bleeding from the lung parenchyma: coagulation hemostasis is the first choice. For wounds with visible air leakage or an insufficient hemostatic effect of coagulation, suturing may be necessary. (V) Bleeding during lymph node dissection: non-grasping en-bloc lymph node dissection is recommended for the nourishing vessels of the lymph node are addressed first with this technique. If bleeding occurs at the site of lymph node dissection, energy devices can be used for hemostasis, sometimes in combination with hemostatic materials. (VI) Bleeding from chest wall incisions: the chest wall incision(s) should always be made along the upper edge of the rib(s), with good hemostasis layer by layer. Recheck the incision for hemostasis before closing the chest is recommended. (VII) Internal chest wall bleeding: it can usually be managed with electrocoagulation. For diffuse capillary bleeding with the undefined bleeding site, compression of the wound with gauze may be helpful
- β¦