1,485 research outputs found

    Do early life cognitive ability and self-regulation skills explain socio-economic inequalities in academic achievement? An effect. decomposition analysis in UK and Australian cohorts

    Get PDF
    Socio-economic inequalities in academic achievement emerge early in life and are observed across the globe. Cognitive ability and “non-cognitive” attributes (such as self-regulation) are the focus of many early years’ interventions. Despite this, little research has compared the contributions of early cognitive and self-regulation abilities as separate pathways to inequalities in academic achievement. We examined this in two nationally representative cohorts in the UK (Millennium Cohort Study, n = 11,168; 61% original cohort) and Australia (LSAC, n = 3028; 59% original cohort). An effect decomposition method was used to examine the pathways from socio-economic disadvantage (in infancy) to two academic outcomes: ‘low’ maths and literacy scores (based on bottom quintile) at age 7–9 years. Risk ratios (RRs, and bootstrap 95% confidence intervals) were estimated with binary regression for each pathway of interest: the ‘direct effect’ of socio-economic disadvantage on academic achievement (not acting through self-regulation and cognitive ability in early childhood), and the ‘indirect effects’ of socio-economic disadvantage acting via self-regulation and cognitive ability (separately). Analyses were adjusted for baseline and intermediate confounding. Children from less advantaged families were up to twice as likely to be in the lowest quintile of maths and literacy scores. Around two-thirds of this elevated risk was ‘direct’ and the majority of the remainder was mediated by early cognitive ability and not self-regulation. For example in LSAC: the RR for the direct pathway from socio-economic disadvantage to poor maths scores was 1.46 (95% CI: 1.17–1.79). The indirect effect of socio-economic disadvantage through cognitive ability (RR = 1.13 [1.06–1.22]) was larger than the indirect effect through self-regulation (1.05 [1.01–1.11]). Similar patterns were observed for both outcomes and in both cohorts. Policies to alleviate social inequality (e.g. child poverty reduction) remain important for closing the academic achievement gap. Early interventions to improve cognitive ability (rather than self-regulation) also hold potential for reducing inequalities in children's academic outcomes

    The PedsQLℱ as a patient-reported outcome in children and adolescents with Attention-Deficit/Hyperactivity Disorder: a population-based study

    Get PDF
    BACKGROUND: Attention-Deficit/Hyperactivity Disorder (ADHD) is the most common chronic mental health condition in children and adolescents. The application of health-related quality of life (HRQOL) as a pediatric population health measure may facilitate risk assessment and resource allocation, the identification of health disparities, and the determination of health outcomes from interventions and policy decisions for children and adolescents with ADHD at the local community, state, and national health level. METHODS: An analysis from an existing statewide database to determine the feasibility, reliability, and validity of the 23-item PedsQLℱ 4.0 (Pediatric Quality of Life Inventoryℱ) Generic Core Scales as a patient-reported outcome (PRO) measure of pediatric population health for children and adolescents with ADHD. The PedsQLℱ 4.0 Generic Core Scales (Physical, Emotional, Social, School Functioning) were completed by families through a statewide mail survey to evaluate the HRQOL of new enrollees in the State of California State's Children's Health Insurance Program (SCHIP). Seventy-two children ages 5–16 self-reported their HRQOL. RESULTS: The PedsQLℱ 4.0 evidenced minimal missing responses, achieved excellent reliability for the Total Scale Score (α = 0.92 child self-report, 0.92 parent proxy-report), and distinguished between healthy children and children with ADHD. Children with ADHD self-reported severely impaired psychosocial functioning, comparable to children with newly-diagnosed cancer and children with cerebral palsy. CONCLUSION: The results suggest that population health monitoring may identify children with ADHD at risk for adverse HRQOL. The implications of measuring pediatric HRQOL for evaluating the population health outcomes of children with ADHD internationally are discussed

    Reliability and validity of PedsQL for Portuguese children aged 5–7 and 8–12 years

    Get PDF
    BACKGROUND: Pediatric Quality of Life Inventory (PedsQL) is a measure to assess health-related quality of life (HRQoL) in children and adolescents. It is formed by 23 items adapted to children age and includes a parent proxy report version. With four multidimensional subscales and three summary scores, it measures health as defined by WHO. The concepts measured by this instrument are ‘physical functioning’ (8 items), ‘emotional functioning’ (5 items), ‘social functioning’ (5 items) and ‘school functioning’ (5 items). It also measures a ‘total scale score’ (23 items), a ‘physical health summary score’ (8 items) and a ‘psychosocial health summary score’ (15 items). The aim of this paper is to present the main results of the cultural adaptation and validation of the PedsQL into European Portuguese. METHODS: The Portuguese version was the result of a forward-backward translation process, with a cognitive debriefing analysis, guaranteeing face validity and semantic equivalence. Children aged 5–7 and 8–12 were randomly selected and were asked to fill a socio-demographic data survey and the Portuguese versions of PedsQL and KINDL, another HRQoL measure for children and adolescents. They were divided into three groups, healthy children, children with type I diabetes and children with spina bifida. The reliability was tested for reproducibility (ICC) and internal consistency (Cronbach’s alpha). The construct validity (known-groups discriminant validity) was supported by differences between self-reports from healthy children and children with chronic conditions, and from children with chronic diseases and their parents. The criterion validity was tested after the correlations of the scores obtained by both children and adolescents HRQoL assessment instruments. RESULTS: A total of 179 children and 97 parents were recruited. PedsQL demonstrated good levels of reproducibility (r > 0.95 in all versions) and acceptable levels of internal consistency with Cronbach’s alpha at 0.70 on most scales. Concordance values between children’s and parents’ perceptions ranged between 0.36 and 0.78 and the correlations with KINDL questionnaire were excellent, supporting concurrent validity. CONCLUSIONS: The Portuguese version of the PedsQL demonstrated acceptable psychometric properties for future research and clinical practice for children aged 5–12

    The critical role of logarithmic transformation in Nernstian equilibrium potential calculations

    Get PDF
    The membrane potential, arising from uneven distribution of ions across cell membranes containing selectively permeable ion channels, is of fundamental importance to cell signaling. The necessity of maintaining the membrane potential may be appreciated by expressing Ohm’s law as current = voltage/resistance and recognizing that no current flows when voltage = 0, i.e., transmembrane voltage gradients, created by uneven transmembrane ion concentrations, are an absolute requirement for the generation of currents that precipitate the action and synaptic potentials that consume >80% of the brain’s energy budget and underlie the electrical activity that defines brain function. The concept of the equilibrium potential is vital to understanding the origins of the membrane potential. The equilibrium potential defines a potential at which there is no net transmembrane ion flux, where the work created by the concentration gradient is balanced by the transmembrane voltage difference, and derives from a relationship describing the work done by the diffusion of ions down a concentration gradient. The Nernst equation predicts the equilibrium potential and, as such, is fundamental to understanding the interplay between transmembrane ion concentrations and equilibrium potentials. Logarithmic transformation of the ratio of internal and external ion concentrations lies at the heart of the Nernst equation, but most undergraduate neuroscience students have little understanding of the logarithmic function. To compound this, no current undergraduate neuroscience textbooks describe the effect of logarithmic transformation in appreciable detail, leaving the majority of students with little insight into how ion concentrations determine, or how ion perturbations alter, the membrane potential

    Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity

    Get PDF
    TRIMCyps are anti-retroviral proteins that have arisen independently in New World and Old World primates. All TRIMCyps comprise a CypA domain fused to the tripartite domains of TRIM5α but they have distinct lentiviral specificities, conferring HIV-1 restriction in New World owl monkeys and HIV-2 restriction in Old World rhesus macaques. Here we provide evidence that Asian macaque TRIMCyps have acquired changes that switch restriction specificity between different lentiviral lineages, resulting in species-specific alleles that target different viruses. Structural, thermodynamic and viral restriction analysis suggests that a single mutation in the Cyp domain, R69H, occurred early in macaque TRIMCyp evolution, expanding restriction specificity to the lentiviral lineages found in African green monkeys, sooty mangabeys and chimpanzees. Subsequent mutations have enhanced restriction to particular viruses but at the cost of broad specificity. We reveal how specificity is altered by a scaffold mutation, E143K, that modifies surface electrostatics and propagates conformational changes into the active site. Our results suggest that lentiviruses may have been important pathogens in Asian macaques despite the fact that there are no reported lentiviral infections in current macaque populations

    Mapping Oil and Gas Development Potential in the US Intermountain West and Estimating Impacts to Species

    Get PDF
    Many studies have quantified the indirect effect of hydrocarbon-based economies on climate change and biodiversity, concluding that a significant proportion of species will be threatened with extinction. However, few studies have measured the direct effect of new energy production infrastructure on species persistence. in the western US and translate the build-out scenarios into estimated impacts on sage-grouse. We project that future oil and gas development will cause a 7–19 percent decline from 2007 sage-grouse lek population counts and impact 3.7 million ha of sagebrush shrublands and 1.1 million ha of grasslands in the study area.Maps of where oil and gas development is anticipated in the US Intermountain West can be used by decision-makers intent on minimizing impacts to sage-grouse. This analysis also provides a general framework for using predictive models and build-out scenarios to anticipate impacts to species. These predictive models and build-out scenarios allow tradeoffs to be considered between species conservation and energy development prior to implementation

    Assisted evolution enables HIV-1 to overcome a high trim5α-imposed genetic barrier to rhesus macaque tropism

    Get PDF
    Diversification of antiretroviral factors during host evolution has erected formidable barriers to cross-species retrovirus transmission. This phenomenon likely protects humans from infection by many modern retroviruses, but it has also impaired the development of primate models of HIV-1 infection. Indeed, rhesus macaques are resistant to HIV-1, in part due to restriction imposed by the TRIM5α protein (rhTRIM5α). Initially, we attempted to derive rhTRIM5α-resistant HIV-1 strains using two strategies. First, HIV-1 was passaged in engineered human cells expressing rhTRIM5α. Second, a library of randomly mutagenized capsid protein (CA) sequences was screened for mutations that reduced rhTRIM5α sensitivity. Both approaches identified several individual mutations in CA that reduced rhTRIM5α sensitivity. However, neither approach yielded mutants that were fully resistant, perhaps because the locations of the mutations suggested that TRIM5α recognizes multiple determinants on the capsid surface. Moreover, even though additive effects of various CA mutations on HIV-1 resistance to rhTRIM5α were observed, combinations that gave full resistance were highly detrimental to fitness. Therefore, we employed an 'assisted evolution' approach in which individual CA mutations that reduced rhTRIM5α sensitivity without fitness penalties were randomly assorted in a library of viral clones containing synthetic CA sequences. Subsequent passage of the viral library in rhTRIM5α-expressing cells resulted in the selection of individual viral species that were fully fit and resistant to rhTRIM5α. These viruses encoded combinations of five mutations in CA that conferred complete or near complete resistance to the disruptive effects of rhTRIM5α on incoming viral cores, by abolishing recognition of the viral capsid. Importantly, HIV-1 variants encoding these CA substitutions and SIVmac239 Vif replicated efficiently in primary rhesus macaque lymphocytes. These findings demonstrate that rhTRIM5α is difficult to but not impossible to evade, and doing so should facilitate the development of primate models of HIV-1 infection
    • 

    corecore