227 research outputs found
Beam characterisation and machine development at VELA
An overview is presented of developments on VELA (Versatile Electron Linear Accelerator), an RF photoinjector with two user stations (beam areas BA1, and BA2) at Daresbury Laboratory. Numerous machine development, commissioning, beam characterisation and user experiments have been completed in the past year. A new beamline and a dedicated multi-purpose chamber have been commissioned in BA1 and the first experiments performed. A number of measures have been taken to improve the stability of machine by mitigating problems with a phase drift, laser beam transport drift and a coherent beam oscillation. The 6D phase space of the electron beam has been characterised through quadrupole scans, transverse tomography and with a transverse deflecting cavity
The evolution of pyrimethamine resistant dhfr in Plasmodium falciparum of south-eastern Tanzania: comparing selection under SP alone vs SP+artesunate combination
BACKGROUND\ud
\ud
Sulphadoxine-pyrimethamine (SP) resistance is now widespread throughout east and southern Africa and artemisinin compounds in combination with synthetic drugs (ACT) are recommended as replacement treatments by the World Health Organization (WHO). As well as high cure rates, ACT has been shown to slow the development of resistance to the partner drug in areas of low to moderate transmission. This study looked for evidence of protection of the partner drug in a high transmission African context. The evaluation was part of large combination therapy pilot implementation programme in Tanzania, the Interdisciplinary Monitoring Programme for Antimalarial Combination Therapy (IMPACT-TZ) METHODS: The growth of resistant dhfr in a parasite population where SP Monotherapy was the first-line treatment was measured for four years (2002-2006), and compared with the development of resistant dhfr in a neighbouring population where SP + artesunate (SP+AS) was used as the first-line treatment during the same interval. The effect of the differing treatment regimes on the emergence of resistance was addressed in three ways. First, by looking at the rate of increase in frequency of pre-existing mutant dhfr alleles under monotherapy and combination therapy. Second, by examining whether de-novo mutant alleles emerged under either treatment. Finally, by measuring diversity at three dhfr flanking microsatellite loci upstream of the dhfr gene.\ud
\ud
RESULTS\ud
\ud
The reduction in SP selection pressure resulting from the adoption of ACT slowed the rate of increase in the frequency of the triple mutant resistant dhfr allele. Comparing between the two populations, the higher levels of genetic diversity in sequence flanking the dhfr triple mutant allele in the population where the ACT regimen had been used indicates the reduction in SP selection pressure arising from combination therapy.\ud
\ud
CONCLUSION\ud
\ud
The study demonstrated that, alleles containing two mutations at the dhfr have arisen at least four times independently while those containing triple mutant dhfr arose only once, and were found carrying a single unique Asian-type flanking sequence, which apparently drives the spread of pyrimethamine resistance associated dhfr alleles in east Africa. SP+AS is not recommended for use in areas where SP cure rates are less than 80% but this study reports an observed principle of combination protection from an area where pyrimethamine resistance was already high
Sarcomere Formation Occurs by the Assembly of Multiple Latent Protein Complexes
The stereotyped striation of myofibrils is a conserved feature of muscle organization that is critical to its function. Although most components that constitute the basic myofibrils are well-characterized biochemically and are conserved across the animal kingdom, the mechanisms leading to the precise assembly of sarcomeres, the basic units of myofibrils, are poorly understood. To gain insights into this process, we investigated the functional relationships of sarcomeric protein complexes. Specifically, we systematically analyzed, using either RNAi in primary muscle cells or available genetic mutations, the organization of myofibrils in Drosophila muscles that lack one or more sarcomeric proteins. Our study reveals that the thin and thick filaments are mutually dependent on each other for striation. Further, the tension sensor complex comprised of zipper/Zasp/α-actinin is involved in stabilizing the sarcomere but not in its initial formation. Finally, integrins appear essential for the interdigitation of thin and thick filaments that occurs prior to striation. Thus, sarcomere formation occurs by the coordinated assembly of multiple latent protein complexes, as opposed to sequential assembly
Hyperparasitaemia and low dosing are an important source of anti-malarial drug resistance
BACKGROUND: Preventing the emergence of anti-malarial drug resistance is critical for the success of current malaria elimination efforts. Prevention strategies have focused predominantly on qualitative factors, such as choice of drugs, use of combinations and deployment of multiple first-line treatments. The importance of anti-malarial treatment dosing has been underappreciated. Treatment recommendations are often for the lowest doses that produce "satisfactory" results. METHODS: The probability of de-novo resistant malaria parasites surviving and transmitting depends on the relationship between their degree of resistance and the blood concentration profiles of the anti-malarial drug to which they are exposed. The conditions required for the in-vivo selection of de-novo emergent resistant malaria parasites were examined and relative probabilities assessed. RESULTS: Recrudescence is essential for the transmission of de-novo resistance. For rapidly eliminated anti-malarials high-grade resistance can arise from a single drug exposure, but low-grade resistance can arise only from repeated inadequate treatments. Resistance to artemisinins is, therefore, unlikely to emerge with single drug exposures. Hyperparasitaemic patients are an important source of de-novo anti-malarial drug resistance. Their parasite populations are larger, their control of the infection insufficient, and their rates of recrudescence following anti-malarial treatment are high. As use of substandard drugs, poor adherence, unusual pharmacokinetics, and inadequate immune responses are host characteristics, likely to pertain to each recurrence of infection, a small subgroup of patients provides the particular circumstances conducive to de-novo resistance selection and transmission. CONCLUSION: Current dosing recommendations provide a resistance selection opportunity in those patients with low drug levels and high parasite burdens (often children or pregnant women). Patients with hyperparasitaemia who receive outpatient treatments provide the greatest risk of selecting de-novo resistant parasites. This emphasizes the importance of ensuring that only quality-assured anti-malarial combinations are used, that treatment doses are optimized on the basis of pharmacodynamic and pharmacokinetic assessments in the target populations, and that patients with heavy parasite burdens are identified and receive sufficient treatment to prevent recrudescence
Youth’s narratives about family members smoking: parenting the parent- it’s not fair!
<p>Abstract</p> <p>Background</p> <p>Successful cancer prevention policies and programming for youth must be based on a solid understanding of youth’s conceptualization of cancer and cancer prevention. Accordingly, a qualitative study examining youth’s perspectives of cancer and its prevention was undertaken. Not surprisingly, smoking (i.e., tobacco cigarette smoking) was one of the dominant lines of discourse in the youth’s narratives. This paper reports findings of how youth conceptualize smoking with attention to their perspectives on parental and family-related smoking issues and experiences.</p> <p>Methods</p> <p>Seventy-five Canadian youth ranging in age from 11–19 years participated in the study. Six of the 75 youth had a history of smoking and 29 had parents with a history of smoking. Youth were involved in traditional ethnographic methods of interviewing and photovoice. Data analysis involved multiple levels of analysis congruent with ethnography.</p> <p>Results</p> <p>Youth’s perspectives of parents and other family members’ cigarette smoking around them was salient as represented by the theme: <it>It’s not fair.</it> Youth struggled to make sense of why parents would smoke around their children and perceived their smoking as an unjust act. The theme was supported by four subthemes: <it>1) parenting the parent about the dangers of smoking; 2) the good/bad parent; 3) distancing family relationships; and 4) the prisoner</it>. Instead of being <it>talked to</it> about smoking it was more common for youth to share stories of <it>talking to</it> their parents about the dangers of smoking. Parents who did not smoke were seen by youth as the good parent, as opposed to the bad parent who smoked. Smoking was an agent that altered relationships with parents and other family members. Youth who lived in homes where they were exposed to cigarette smoke felt like a trapped prisoner.</p> <p>Conclusions</p> <p>Further research is needed to investigate youth’s perceptions about parental cigarette smoking as well as possible linkages between youth exposed to second hand smoke in their home environment and emotional and lifestyle-related health difficulties. Results emphasize the relational impact of smoking when developing anti-tobacco and cancer prevention campaigns. Recognizing the potential toll that second-hand smoke can have on youth’s emotional well-being, health care professionals are encouraged to give youth positive messages in coping with their parents’ smoking behaviour.</p
Imaging Cyclic AMP Changes in Pancreatic Islets of Transgenic Reporter Mice
Cyclic AMP (cAMP) and Ca2+ are two ubiquitous second messengers in transduction pathways downstream of receptors for hormones, neurotransmitters and local signals. The availability of fluorescent Ca2+ reporter dyes that are easily introduced into cells and tissues has facilitated analysis of the dynamics and spatial patterns for Ca2+ signaling pathways. A similar dissection of the role of cAMP has lagged because indicator dyes do not exist. Genetically encoded reporters for cAMP are available but they must be introduced by transient transfection in cell culture, which limits their utility. We report here that we have produced a strain of transgenic mice in which an enhanced cAMP reporter is integrated in the genome and can be expressed in any targeted tissue and with tetracycline induction. We have expressed the cAMP reporter in β-cells of pancreatic islets and conducted an analysis of intracellular cAMP levels in relation to glucose stimulation, Ca2+ levels, and membrane depolarization. Pancreatic function in transgenic mice was normal. In induced transgenic islets, glucose evoked an increase in cAMP in β-cells in a dose-dependent manner. The cAMP response is independent of (in fact, precedes) the Ca2+ influx that results from glucose stimulation of islets. Glucose-evoked cAMP responses are synchronous in cells throughout the islet and occur in 2 phases suggestive of the time course of insulin secretion. Insofar as cAMP in islets is known to potentiate insulin secretion, the novel transgenic mouse model will for the first time permit detailed analyses of cAMP signals in β-cells within islets, i.e. in their native physiological context. Reporter expression in other tissues (such as the heart) where cAMP plays a critical regulatory role, will permit novel biomedical approaches
Emergency treatment with levetiracetam or phenytoin in status epilepticus in children-the EcLiPSE study: Study protocol for a randomised controlled trial
© The Author(s). 2017. Background: Convulsive status epilepticus (CSE) is the most common life-threatening neurological emergency in childhood. These children are also at risk of significant morbidity, with acute and chronic impact on the family and the health and social care systems. The current recommended first-choice, second-line treatment in children aged 6 months and above is intravenous phenytoin (fosphenytoin in the USA), although there is a lack of evidence for its use and it is associated with significant side effects. Emerging evidence suggests that intravenous levetiracetam may be effective as a second-line agent for CSE, and fewer adverse effects have been described. This trial therefore aims to determine whether intravenous phenytoin or levetiracetam is more effective, and safer, in treating childhood CSE. Methods/design: This is a phase IV, multi-centre, parallel group, randomised controlled, open-label trial. Following treatment for CSE with first-line treatment, children with ongoing seizures are randomised to receive either phenytoin (20 mg/kg, maximum 2 g) or levetiracetam (40 mg/kg, maximum 2.5 g) intravenously. The primary outcome measure is the cessation of all visible signs of CSE as determined by the treating clinician. Secondary outcome measures include the need for further anti-seizure medications or rapid sequence induction for ongoing CSE, admission to critical care areas, and serious adverse reactions. Patients are recruited without prior consent, with deferred consent sought at an appropriate time for the family. The primary analysis will be by intention-to-treat. The primary outcome is a time to event outcome and a sample size of 140 participants in each group will have 80% power to detect an increase in CSE cessation rates from 60% to 75%. Our total sample size of 308 randomised and treated participants will allow for 10% loss to follow-up. Discussion: This clinical trial will determine whether phenytoin or levetiracetam is more effective as an intravenous second-line agent for CSE, and provide evidence for management recommendations. In addition, this trial will also provide data on which of these therapies is safer in this setting
Polycomb Group Protein Bmi1 Is Required for Growth of RAF Driven Non-Small-Cell Lung Cancer
Background: We have previously described a RAF oncogene driven transgenic mouse model for non small cell lung cancer (NSCLC). Here we examine whether tumor initiation and growth requires the stem cell self-renewal factor Bmi1. Principal Findings: In order to evaluate Bmi1 function in NSCLC two founder lines that differ in incidence and latency of tumor formation were compared. Ablation of Bmi1 expression in both lines had a dramatically decreased tumor growth. As the line with shorter latency matched the life span of Bmi1 knock out mice, these mice were chosen for further study. The absence of Bmi1 did not decrease the number of tumor initiation in these mice as only the size and not the number of tumors decreased. Reduction in tumor growth resulted from an increase in cell death and decrease in cell cycle progression that corresponded with up-regulation of the p16 INK4a and p19 ARF. Significance: The data identifies Bmi1 as an important factor for expansion but not initiation of RAF driven NSCLC
Clathrin and LRP-1-Independent Constitutive Endocytosis and Recycling of uPAR
Background: The urokinase receptor (uPAR/CD87) is highly expressed in malignant tumours. uPAR, as a GPI anchored protein, is preferentially located at the cell surface, where it interacts with its ligands urokinase (uPA) and the extracellular matrix protein vitronectin, thus promoting plasmin generation, cell-matrix interactions and intracellular signalling events. Interaction with a complex formed by uPA and its inhibitor PAI-1 induces cell surface down regulation and recycling of the receptor via the clathrin-coated pathway, a process dependent on the association to LRP-1. Methodology/Principal Findings: In this study, we have found that along with the ligand-induced down-regulation, uPAR also internalizes and recycles constitutively through a second pathway that is independent of LRP-1 and clathrin but shares some properties with macropinocytosis. The ligand-independent route is amiloride-sensitive, does not require uPAR partitioning into lipid rafts, is independent of the activity of small GTPases RhoA, Rac1 and Cdc42, and does not require PI3K activity. Constitutively endocytosed uPAR is found in EEA1 positive early/recycling endosomes but does not reach lysosomes in the absence of ligands. Electron microscopy analysis reveals the presence of uPAR in ruffling domains at the cell surface, in macropinosome-like vesicles and in endosomal compartments. Conclusions/Significance: These results indicate that, in addition to the ligand-induced endocytosis of uPAR, efficient surface expression and membrane trafficking might also be driven by an uncommon macropinocytic mechanism couple
- …