73 research outputs found

    Intelligent driver profiling system for cars – a basic concept

    Get PDF
    Many industries have been transformed by the provision of service solutions characterised by personalisation and customisation - most dramatically the development of the iPhone. Personalisation and customisation stand to make an impact on cars and mobility in comparable ways. The automobile industry has a major role to play in this change, with moves towards electric vehicles, auton-omous cars, and car sharing as a service. These developments are likely to bring disruptive changes to the business of car manufacturers as well as to drivers. However, in the automobile industry, both the user's preferences and demands and also safety issues need to be confronted since the frequent use of different makes and models of cars, implied by car sharing, entails several risks due to variations in car controls depending on the manufacturer. Two constituencies, in particular, are likely to experience even more difficulties than they already do at present, namely older people and those with capability variations. To overcome these challenges, and as a means to empower a wide car user base, the paper here presents a basic concept of an intelligent driver profiling system for cars: the sys-tem would enable various car characteristics to be tailored according to individual driver-dependent profiles. It is intended that wherever possible the system will personalise the characteristics of individual car components; where this is not possible, however, an initial customisation will be performed

    Limited Value of Staging Squamous Cell Carcinoma of the Anal Margin and Canal Using the Sentinel Lymph Node Procedure: A Prospective Study with Long-Term Follow-Up

    Get PDF
    Background. Selection of patients with anal cancer for groin irradiation is based on tumor size, palpation, ultrasound, and fine needle cytology. Current staging of anal cancer may result in undertreatment in small tumors and overtreatment of large tumors. This study reports the feasibility of the sentinel lymph node biopsy (SLNB) in patients with anal cancer and whether this improves the selection for inguinal radiotherapy. Methods. A total of 50 patients with squamous anal cancer were evaluated prospectively. Patients without a SLNB (n = 29) received irradiation of the inguinal lymph nodes based on lymph node status, tumor size, and location of the primary tumor. Inguinal irradiation treatment in patients with a SLNB was based on the presence of metastases in the SLN. Results. SLNs were found in all 21 patients who underwent a SLNB. There were 5 patients (24%) who had complications after SLNB and 7 patients (33%) who had a positive SLN and received inguinal irradiation. However, 2 patients with a tumor-free SLN and no inguinal irradiation developed lymph node metastases after 12 and 24 months, respectively. Conclusions. We conclude that SLNB in anal cancer is technically feasible. SLNB can identify those patients who would benefit from refrain of inguinal irradiation treatment and thereby reducing the incidence of unnecessary inguinal radiotherapy. However, because of the occurrence of inguinal lymph node metastases after a tumor-negative SLNB, introduction of this procedure as standard of care in all patients with anal carcinoma should be done with caution to avoid undertreatment of patient who otherwise would benefit from inguinal radiotherapy

    The Drosophila Cytosine-5 Methyltransferase Dnmt2 Is Associated with the Nuclear Matrix and Can Access DNA during Mitosis

    Get PDF
    Cytosine-5 methyltransferases of the Dnmt2 family are highly conserved in evolution and their biological function is being studied in several organisms. Although all structural DNA methyltransferase motifs are present in Dnmt2, these enzymes show a strong tRNA methyltransferase activity. In line with an enzymatic activity towards substrates other than DNA, Dnmt2 has been described to localize to the cytoplasm. Using molecular and biochemical approaches we show here that Dnmt2 is both a cytoplasmic and a nuclear protein. Sub-cellular fractionation shows that a significant amount of Dnmt2 is bound to the nuclear matrix. Sub-cellular localization analysis reveals that Dnmt2 proteins are enriched in actively dividing cells. Dnmt2 localization is highly dynamic during the cell cycle. Using live imaging we observed that Dnmt2-EGFP enters prophase nuclei and shows a spindle-like localization pattern during mitotic divisions. Additional experiments suggest that this localization is microtubule dependent and that Dnmt2 can access DNA during mitotic cell divisions. Our results represent the first comprehensive characterization of Dnmt2 proteins on the cellular level and have important implications for our understanding of the molecular activities of Dnmt2

    Radionuclide imaging of bone marrow disorders

    Get PDF
    Noninvasive imaging techniques have been used in the past for visualization the functional activity of the bone marrow compartment. Imaging with radiolabelled compounds may allow different bone marrow disorders to be distinguished. These imaging techniques, almost all of which use radionuclide-labelled tracers, such as 99mTc-nanocolloid, 99mTc-sulphur colloid, 111In-chloride, and radiolabelled white blood cells, have been used in nuclear medicine for several decades. With these techniques three separate compartments can be recognized including the reticuloendothelial system, the erythroid compartment and the myeloid compartment. Recent developments in research and the clinical use of PET tracers have made possible the analysis of additional properties such as cellular metabolism and proliferative activity, using 18F-FDG and 18F-FLT. These tracers may lead to better quantification and targeting of different cell systems in the bone marrow. In this review the imaging of different bone marrow targets with radionuclides including PET tracers in various bone marrow diseases are discussed

    Small-animal SPECT and SPECT/CT: application in cardiovascular research

    Get PDF
    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease

    Short-Lived Trace Gases in the Surface Ocean and the Atmosphere

    Get PDF
    The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science
    corecore