218 research outputs found

    ‘‘You try to keep a brave face on but inside you are in bits’’: Grandparent experiences of engaging with professionals in Children’s Services

    Get PDF
    This article presents findings from an evaluation conducted in 2012, of the advice and advocacy service provided by the charity Family Rights Group for families involved with children’s services. It specifically focuses on the experiences of grandparents and explores accounts from grandparents who were either in the process of seeking care of their grandchildren or were already caring for grandchildren but without formal support or recognition. The findings suggest that there is a need to pay greater attention to the fears of such grandparents about children’s services in a context where there appears to be a policy preference for adoption. Also evident is a paradox at the heart of contemporary social work practices towards grandparents. While some felt dismissed and marginalized very quickly by social workers and imaginative approaches to care possibilities did not appear to be pursued, others were carrying enormous burdens of care often for very long periods of time without either financial support or legal recognition. To strengthen the care options for children and respect the ethic of care that is clearly to be observed operating in grandparenting practices, it is suggested that a more thorough interrogation of the multiple and often highly contradictory meanings attached to family is required on the part of social workers

    Anti-relapse neurons in the infralimbic cortex of rats drive relapse-suppression by drug omission cues

    Get PDF
    Drug addiction is a chronic relapsing disorder of compulsive drug use. Studies of the neurobehavioral factors that promote drug relapse have yet to produce an effective treatment. Here we take a different approach and examine the factors that suppress – rather than promote – relapse. Adapting Pavlovian procedures to suppress operant drug response, we determined the anti-relapse action of environmental cues that signal drug omission (unavailability) in rats. Under laboratory conditions linked to compulsive drug use and heightened relapse risk, drug omission cues suppressed three major modes of relapse-promotion (drug-predictive cues, stress, and drug exposure) for cocaine and alcohol. This relapse-suppression is partially driven by omission cue-reactive neurons, which constitute small subsets of glutamatergic and GABAergic cells, in the infralimbic cortex. Future studies of such neural activity-based cellular units (neuronal ensembles/memory engram cells) for relapse-suppression can be used to identify alternate targets for addiction medicine through functional characterization of anti-relapse mechanisms

    Complexity Theory for a New Managerial Paradigm: A Research Framework

    Get PDF
    In this work, we supply a theoretical framework of how organizations can embed complexity management and sustainable development into their policies and actions. The proposed framework may lead to a new management paradigm, attempting to link the main concepts of complexity theory, change management, knowledge management, sustainable development, and cybernetics. We highlight how the processes of organizational change have occurred as a result of the move to adapt to the changes in the various global and international business environments and how this transformation has led to the shift toward the present innovation economy. We also point how organizational change needs to deal with sustainability, so that the change may be consistent with present needs, without compromising the future

    Redox regulation of mitochondrial fission, protein misfolding, synaptic damage, and neuronal cell death: potential implications for Alzheimer’s and Parkinson’s diseases

    Get PDF
    Normal mitochondrial dynamics consist of fission and fusion events giving rise to new mitochondria, a process termed mitochondrial biogenesis. However, several neurodegenerative disorders manifest aberrant mitochondrial dynamics, resulting in morphological abnormalities often associated with deficits in mitochondrial mobility and cell bioenergetics. Rarely, dysfunctional mitochondrial occur in a familial pattern due to genetic mutations, but much more commonly patients manifest sporadic forms of mitochondrial disability presumably related to a complex set of interactions of multiple genes (or their products) with environmental factors (G × E). Recent studies have shown that generation of excessive nitric oxide (NO), in part due to generation of oligomers of amyloid-β (Aβ) protein or overactivity of the NMDA-subtype of glutamate receptor, can augment mitochondrial fission, leading to frank fragmentation of the mitochondria. S-Nitrosylation, a covalent redox reaction of NO with specific protein thiol groups, represents one mechanism contributing to NO-induced mitochondrial fragmentation, bioenergetic failure, synaptic damage, and eventually neuronal apoptosis. Here, we summarize our evidence in Alzheimer’s disease (AD) patients and animal models showing that NO contributes to mitochondrial fragmentation via S-nitrosylation of dynamin-related protein 1 (Drp1), a protein involved in mitochondrial fission. These findings may provide a new target for drug development in AD. Additionally, we review emerging evidence that redox reactions triggered by excessive levels of NO can contribute to protein misfolding, the hallmark of a number of neurodegenerative disorders, including AD and Parkinson’s disease. For example, S-nitrosylation of parkin disrupts its E3 ubiquitin ligase activity, and thereby affects Lewy body formation and neuronal cell death

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage

    Vitamin D status predicts reproductive fitness in a wild sheep population

    Get PDF
    Vitamin D deficiency has been associated with the development of many human diseases, and with poor reproductive performance in laboratory rodents. We currently have no idea how natural selection directly acts on variation in vitamin D metabolism due to a total lack of studies in wild animals. Here, we measured serum 25 hydroxyvitamin D (25(OH)D) concentrations in female Soay sheep that were part of a long-term field study on St Kilda. We found that total 25(OH)D was strongly influenced by age, and that light coloured sheep had higher 25(OH)D(3) (but not 25(OH)D(2)) concentrations than dark sheep. The coat colour polymorphism in Soay sheep is controlled by a single locus, suggesting vitamin D status is heritable in this population. We also observed a very strong relationship between total 25(OH)D concentrations in summer and a ewe’s fecundity the following spring. This resulted in a positive association between total 25(OH)D and the number of lambs produced that survived their first year of life, an important component of female reproductive fitness. Our study provides the first insight into naturally-occurring variation in vitamin D metabolites, and offers the first evidence that vitamin D status is both heritable and under natural selection in the wild
    corecore