1,969 research outputs found

    Can glass polyalkenoate (glass-ionomer) dental cements be considered bioactive? A review.

    Get PDF
    OBJECTIVES: This paper reviews the chemical behaviour of glass polyalkenoate (glass-ionomer) dental cements, both conventional and resin-modified, in contact with natural tissues, with the aim of determining whether these materials can be considered to be bioactive. DATA: Relevant papers describing the behaviour of bioactive glasses and ceramics, and glass-ionomer (glass polyalkenoate) cements have been identified using PubMed and Science Direct. This has allowed a comparison to be made between the behaviour of glass-ionomers and the speciality glasses and ceramics that are widely classified as bioactive, a designation considered valid for over fifty years. More recent papers concerning bioactive metals and polymers have also been studied and both in vitro and in vivo studies are included. SOURCES: Have included general papers on the chemistry and biological behaviour of bioactive glasses and ceramics, as well as papers on glass-ionomers dealing with (i) ion release, (ii) bonding to the surface of teeth, (iii) influence on surrounding pH and (iv) interaction with bone. CONCLUSION: The literature shows that glass-ionomers (glass polyalkenoates) have three types of behaviour that are similar to those of bioactive glasses as follows: Formation of direct bonds to living tissue (teeth and bones) without fibrous capsule; release of biologically beneficial ions; and change of the local pH. However, in in vitro tests, they do not cause calcium phosphate to precipitate from solutions of simulated body fluid, SBF. Despite this, studies show that, in patients, glass-ionomers interact chemically with hard tissues and this suggests that may indeed be considered bioactive

    The Relationship Between Retinal Vessel Oxygenation and Spatial Distribution of Retinal Nonperfusion in Retinal Vascular Diseases

    Get PDF
    Purpose: We study the relationship between retinal vessel oxygenation and the spatial distribution of retinal nonperfusion using ultrawide field angiography in eyes with retinal vascular diseases. Methods: This prospective single center study recruited 57 eligible eyes from 44 patients with retinal vascular diseases. Retinal oximetry measurements were obtained using the Oxymap T1 device to determine the arteriovenous (AV) difference. Retinal nonperfusion was measured from ultrawide field angiography images taken with the Optos 200TX system and superimposing the images with the concentric rings template to determine the area and distribution of retinal nonperfusion. Results: Seven (12.3%) eyes had a diagnosis of a branch or hemiretinal vein occlusion, 24 (42.1%) with central retinal vein occlusion and 26 (45.6%) with diabetic retinopathy (11 [19.3%] nonproliferative and 15 [26.3%] proliferative diabetic retinopathy). The correlation between the total area of retinal nonperfusion with the AV difference controlling for age was not statistically significant (R = -0.103, P = 0.449). However, when analyzing the correlation of AV difference with the area of retinal nonperfusion in the posterior pole controlling for age and peripheral nonperfusion, this was significant (R = -0.295, P = 0.029). This was not significant for the area of retinal nonperfusion in the periphery while controlling for posterior pole nonperfusion and age (R = 0.124, P = 0.368). Conclusions: Retinal nonperfusion has a negative correlation with AV difference measured on retinal oximetry. This correlation is significant in the posterior pole, but not in the peripheral retina

    Translucency parameter of conventional restorative glass-ionomer cements.

    Get PDF
    OBJECTIVE: To evaluate the translucency parameter (TP) and contrast ratio (CR) of different conventional restorative glass-ionomer cements (GICs). MATERIALS AND METHODS: Eighteen brands of GICs were evaluated. Five disks of each material were made following ISO 9917-1. The luminous reflectance and Central Bureau of the International Commission on Illumination parameters of disks were evaluated using a colorimeter, against backings of white and black, to obtain the translucent parameter and contrast ratio of different brands of glass-ionomer cements. The correlation between translucency parameter and contrast ratio was assessed with the Pearson correlation test. The translucent and contrast ratio parameters values were submitted to the one-way ANOVA and Tukey test for multiple comparisons (p < 0.05). RESULTS: There was a strong inverse relationship between CR and TP (r2 = 0.94, p < 0.001). The contrast ratio decreased as translucency increased. There were significant differences in TP and CR among brands (p < 0.001). CONLUSIONS: GICs exhibit different translucency and contrast ratio behavior. Some brands of GICs presented very low TP and this condition would be unacceptable for areas with esthetic demands. In addition, TP and CR showed a strong linear relationship. CLINICAL SIGNIFICANCE: The results found in this study demonstrated that the knowledge of the translucency and CR of different conventional restorative GICs is important in order to guide clinicians in the selection of restorative GICs for anterior teeth

    Optical fibre-based environmental sensors utilizing wireless smart grid platform

    Get PDF
    With the advent and development of smart grid in recent years, traditional power grid is undergoing a profound revolution. By utilizing modern wireless technology and sensor, wireless smart grid (WSG) can effectively solve many hard and haunting issues in traditional grid, such as high maintenance costs, poor scalability, low efficiency and stability. In a WSG, data are collected by sensors at first and then transmitted to base station through wireless network. After receiving those data, corresponding actions are executed by control center. We present the integration of optical fibre-based sensor to WSG platform for real-time environmental monitoring. As a proof-of-concept, an optical fibre sensor for refractive index (RI) sensing of fresh water is adopted. The sensing mechanism relies on the reflectance at the fibre interface, where the intensity of the reflected spectra is registered corresponding to the change of the RI of the ambient environment. A sensitivity of 29.3 dB/RIU is achieved for the fabricated fibre sensor within the RI range of 1.33–1.46, and the acquired data is transmitted through wireless smart meters

    Retinal non-perfusion in the posterior pole is associated with increased risk of neovascularization in central retinal vein occlusion.

    Get PDF
    PURPOSE: To review the definition of ischaemic central retinal vein occlusion (CRVO) and stratify the risk of neovascular complication based on wider areas of visible retinal non-perfusion. DESIGN: Retrospective consecutive case series and image analysis study METHODS: Setting: Moorfields Eye Hospital, London, United Kingdom. STUDY POPULATION: 42 consecutive treatment naïve eyes with CRVO imaged with ultra-widefield angiography with a minimum of 12 months follow-up. OBSERVATION PROCEDURE: The spatial location and total area of retinal non-perfusion (measured in disc areas, DA) were determined using the validated concentric rings method. The area was corrected for projection distortion. The images were graded by two retinal physicians and average measurements used. MAIN OUTCOME MEASURES: Development of neovascular complications. RESULTS: The percentage of eyes developing new vessels increased from none in eyes with less than 10 DA of non-perfusion in total, to 14.3% in eyes with 10-30DA, 20.0% for 30-75DA and 80% risk with 75-150DA of non-perfusion. From 13 (31.0%) eyes with a perfused posterior pole (an area encompassing a five disc diameter radius centered at the fovea) and more than 10DA of non-perfusion isolated in the periphery (beyond the posterior pole), only one (7.7%) eye developed new vessels, OR 0.12 [95% CI:0.01,1.03]. Comparatively, for 13 (31.0%) eyes with more than 10DA of non-perfusion in the posterior pole, 11 (84.6%) developed new vessels, OR 74.25 [95% CI: 9.26, 595.30], p<0.001. CONCLUSION: With ultra-widefield angiography, we have ascertained that posterior pole non-perfusion of more than 10DA remains the key risk factor for new vessel development compared to areas of non-perfusion confined to the periphery

    Quantifying Retinal Area in Ultra-Widefield Imaging Using a 3-Dimensional Printed Eye Model

    Get PDF
    Purpose: To study the effects of different axial lengths on ultra-widefield imaging to determine the presence of distortion in images despite software correction and calculate an enlargement factor based on angular location. / Design: Experimental image analysis study. / Study Objects: Three 3-dimensional printed model eyes simulating eyes with axial lengths of 22, 24, and 26 mm. Each model has a grid of rings 9° apart centered at the posterior pole. / Methods: Single-center study performed at the National Institute for Health Research Moorfields Biomedical Research Centre (London, UK). Each model was imaged using Optos 200TX (Optos, Dunfermline, UK). Two images for each model eye that were corrected using V2 Vantage Pro software (Optos) were used for analysis and the average values obtained. Each image inter-ring area was measured using ImageJ to obtain a measured image area in pixel and square millimeters. This was compared with the true calculated object inter-ring area and an enlargement factor was determined. / Main Outcome Measures: Measured image inter-ring area in pixels and square millimeters. True calculated object inter-ring area in square millimeters. / Results: The enlargement factor of the rings gradually increases toward the periphery with factors of 1.4 at 45° and 1.9 at the equator. The axial lengths did not affect the enlargement factor of the rings imaged in 3 different model eyes (P = 0.9512). The anterior equator exhibits a significant distortion despite the software correction. / Conclusion: The enlargement factor depends on angular location and not axial length. The enlargement factors can be used in clinical practice to more accurately measure area in ultra-widefield imaging

    Influence of severe plastic deformation on the precipitation hardening of a FeSiTi steel

    Full text link
    The combined strengthening effects of grain refinement and high precipitated volume fraction (~6at.%) on the mechanical properties of FeSiTi alloy subjected to SPD processing prior to aging treatment were investigated by atom probe tomography and scanning transmission electron microscopy. It was shown that the refinement of the microstructure affects the precipitation kinetics and the spatial distribution of the secondary hardening intermetallic phase, which was observed to nucleate heterogeneously on dislocations and sub-grain boundaries. It was revealed that alloys successively subjected to these two strengthening mechanisms exhibit a lower increase in mechanical strength than a simple estimation based on the summation of the two individual strengthening mechanisms
    corecore