378 research outputs found
Clinical effectiveness of unilateral deep brain stimulation in Tourette syndrome
Dysfunctional basal ganglia loops are thought to underlie the clinical picture of Tourette syndrome (TS). By altering dopaminergic activity in the affected neural structures, bilateral deep brain stimulation is assumed to have a modulatory effect on dopamine transmission resulting in an amelioration of tics. While the majority of published case reports deals with the application of bilateral stimulation, the present study aims at informing about the high effectiveness of unilateral stimulation of pallidal and nigral thalamic territories in TS. Potential implications and gains of the unilateral approach are discussed
The Limits of Anthropocene Narratives
The rapidly growing transdisciplinary enthusiasm about developing new kinds of Anthropocene stories is based on the shared assumption that the Anthropocene predicament is best made sense of by narrative means. Against this assumption, this article argues that the challenge we are facing today does not merely lie in telling either scientific, socio-political, or entangled Anthropocene narratives to come to terms with our current condition. Instead, the challenge lies in coming to grips with how the stories we can tell in the Anthropocene relate to the radical novelty of the Anthropocene condition about which no stories can be told. What we need to find are meaningful ways to reconcile an inherited commitment to narrativization and the collapse of storytelling as a vehicle of understanding the Anthropocene as our current predicament
Cerebral activations related to ballistic, stepwise interrupted and gradually modulated movements in parkinson patients
Patients with Parkinson's disease (PD) experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG) contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12) and healthy subjects (N = 18). In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN) and premotor activations while inhibition was dominated by subthalamic nucleus (STN) and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static) model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account enhanced responsiveness to external stimuli in this disease and the effects of hyper-fluctuating cortical inputs to the striatum and STN in particular
New zebrafish models of neurodegeneration
In modern biomedicine, the increasing need to develop experimental models to further our understanding of disease conditions and delineate innovative treatments has found in the zebrafish (Danio rerio) an experimental model, and indeed a valuable asset, to close the gap between in vitro and in vivo assays. Translation of ideas at a faster pace is vital in the field of neurodegeneration, with the attempt to slow or prevent the dramatic impact on the society's welfare being an essential priority. Our research group has pioneered the use of zebrafish to contribute to the quest for faster and improved understanding and treatment of neurodegeneration in concert with, and inspired by, many others who have primed the study of the zebrafish to understand and search for a cure for disorders of the nervous system. Aware of the many advantages this vertebrate model holds, here, we present an update on the recent zebrafish models available to study neurodegeneration with the goal of stimulating further interest and increasing the number of diseases and applications for which they can be exploited. We shall do so by citing and commenting on recent breakthroughs made possible via zebrafish, highlighting their benefits for the testing of therapeutics and dissecting of disease mechanisms
Hospitalization for pertussis: profiles and case costs by age
BACKGROUND: Pertussis, a highly contagious respiratory illness, affects people of all ages and can have serious clinical consequences. It has been reported that from 1997–2000, 20% of all pertussis cases required hospitalization in the US. This analysis examined demographics, case fatality rate, resource use and costs of hospital care related to pertussis by age. METHODS: ICD-9 codes (033.0, 033.9) were used to identify cases of pertussis in hospital discharge databases from roughly 1,000 US hospitals in 4 states (California, Florida, Maryland, Massachusetts). Data from 1996–1999 were examined by age group. Separate analyses were done for infants (<1 year) and children (1–11 years); however, adolescent and adult cases were combined into one group (12+ years), due to the small number of cases. Databases were used to determine demographics, health service utilization and care costs. Cost estimates include accommodations, ancillary and physician services, reported in 2002 US9,586 per stay. Children (n = 191) had a mean LOS of 3.7 and cost of 5,683 per hospitalization. CONCLUSION: Infants are responsible for the bulk of hospitalizations and generate higher inpatient costs. Costly hospital care occurs, however, in patients with pertussis at all ages
Immunotoxin-Mediated Tract Targeting in the Primate Brain: Selective Elimination of the Cortico-Subthalamic “Hyperdirect” Pathway
Using a neuron-specific retrograde gene-transfer vector (NeuRet vector), we established immunotoxin (IT)-mediated tract targeting in the primate brain that allows ablation of a neuronal population constituting a particular pathway. Here, we attempted selective removal of the cortico-subthalamic “hyperdirect” pathway. In conjunction with the direct and indirect pathways, the hyperdirect pathway plays a crucial role in motor information processing in the basal ganglia. This pathway links the motor-related areas of the frontal lobe directly to the subthalamic nucleus (STN) without relay at the striatum. After electrical stimulation in the motor-related areas such as the supplementary motor area (SMA), triphasic responses consisting of an early excitation, an inhibition, and a late excitation are usually detected in the internal segment of the globus pallidus (GPi). Several lines of pharmacophysiological evidence suggest that the early excitation may be derived from the hyperdirect pathway. In the present study, the NeuRet vector expressing human interleukin-2 receptor α-subunit was injected into the STN of macaque monkeys. Then, IT injections were made into the SMA. In these monkeys, single-neuron activity in the GPi was recorded in response to the SMA stimulation. We found that the early excitation was largely reduced, with neither the inhibition nor the late excitation affected. The spontaneous firing rate and pattern of GPi neurons remained unchanged. This indicates that IT-mediated tract targeting successfully eliminated the hyperdirect pathway selectively from the basal ganglia circuitry without affecting spontaneous activity of STN neurons. The electrophysiological finding was confirmed with anatomical data obtained from retrograde and anterograde neural tracings. The present results define that the cortically-driven early excitation in GPi neurons is mediated by the hyperdirect pathway. The IT-mediated tract targeting technique will provide us with novel strategies for elucidating various neural network functions
Guidelines on the diagnosis, clinical assessments, treatment and management for CLN2 disease patients.
BACKGROUND: CLN2 disease (Neuronal Ceroid Lipofuscinosis Type 2) is an ultra-rare, neurodegenerative lysosomal storage disease, caused by an enzyme deficiency of tripeptidyl peptidase 1 (TPP1). Lack of disease awareness and the non-specificity of presenting symptoms often leads to delayed diagnosis. These guidelines provide robust evidence-based, expert-agreed recommendations on the risks/benefits of disease-modifying treatments and the medical interventions used to manage this condition. METHODS: An expert mapping tool process was developed ranking multidisciplinary professionals, with knowledge of CLN2 disease, diagnostic or management experience of CLN2 disease, or family support professionals. Individuals were sequentially approached to identify two chairs, ensuring that the process was transparent and unbiased. A systematic literature review of published evidence using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidance was independently and simultaneously conducted to develop key statements based upon the strength of the publications. Clinical care statements formed the basis of an international modified Delphi consensus determination process using the virtual meeting (Within3) online platform which requested experts to agree or disagree with any changes. Statements reaching the consensus mark became the guiding statements within this manuscript, which were subsequently assessed against the Appraisal of Guidelines for Research and Evaluation (AGREEII) criteria. RESULTS: Twenty-one international experts from 7 different specialities, including a patient advocate, were identified. Fifty-three guideline statements were developed covering 13 domains: General Description and Statements, Diagnostics, Clinical Recommendations and Management, Assessments, Interventions and Treatment, Additional Care Considerations, Social Care Considerations, Pain Management, Epilepsy / Seizures, Nutritional Care Interventions, Respiratory Health, Sleep and Rest, and End of Life Care. Consensus was reached after a single round of voting, with one exception which was revised, and agreed by 100% of the SC and achieved 80% consensus in the second voting round. The overall AGREE II assessment score obtained for the development of the guidelines was 5.7 (where 1 represents the lowest quality, and 7 represents the highest quality). CONCLUSION: This program provides robust evidence- and consensus-driven guidelines that can be used by all healthcare professionals involved in the management of patients with CLN2 disease and other neurodegenerative disorders. This addresses the clinical need to complement other information available
Motor-Cortical Interaction in Gilles de la Tourette Syndrome
BACKGROUND: In Gilles de la Tourette syndrome (GTS) increased activation of the primary motor cortex (M1) before and during movement execution followed by increased inhibition after movement termination was reported. The present study aimed at investigating, whether this activation pattern is due to altered functional interaction between motor cortical areas. METHODOLOGY/PRINCIPAL FINDINGS: 10 GTS-patients and 10 control subjects performed a self-paced finger movement task while neuromagnetic brain activity was recorded using Magnetoencephalography (MEG). Cerebro-cerebral coherence as a measure of functional interaction was calculated. During movement preparation and execution coherence between contralateral M1 and supplementary motor area (SMA) was significantly increased at beta-frequency in GTS-patients. After movement termination no significant differences between groups were evident. CONCLUSIONS/SIGNIFICANCE: The present data suggest that increased M1 activation in GTS-patients might be due to increased functional interaction between SMA and M1 most likely reflecting a pathophysiological marker of GTS. The data extend previous findings of motor-cortical alterations in GTS by showing that local activation changes are associated with alterations of functional networks between premotor and primary motor areas. Interestingly enough, alterations were evident during preparation and execution of voluntary movements, which implies a general theme of increased motor-cortical interaction in GTS
The maintenance gap: a new theoretical perspective on the evolution of aging
One of the prevailing theories of aging, the disposable soma theory, views aging as the result of the accumulation of damage through imperfect maintenance. Aging, then, is explained from an evolutionary perspective by asserting that this lack of maintenance exists because the required resources are better invested in reproduction. However, the amount of maintenance necessary to prevent aging, ‘maintenance requirement’ has so far been largely neglected and has certainly not been considered from an evolutionary perspective. To our knowledge we are the first to do so, and arrive at the conclusion that all maintenance requirement needs an evolutionary explanation. Increases in maintenance requirement can only be selected for if these are linked with either higher fecundity or better capabilities to cope with environmental challenges to the integrity of the organism. Several observations are suggestive of the latter kind of trade-off, the existence of which leads to the inevitable conclusion that the level of maintenance requirement is in principle unbound. Even the allocation of all available resources to maintenance could be unable to stop aging in some organisms. This has major implications for our understanding of the aging process on both the evolutionary and the mechanistic level. It means that the expected effect of measures to reallocate resources to maintenance from reproduction may be small in some species. We need to have an idea of how much maintenance is necessary in the first place. Our explorations of how natural selection is expected to act on the maintenance requirement provides the first step in understanding this
- …