15 research outputs found

    Cellular Proteins in Influenza Virus Particles

    Get PDF
    Virions are thought to contain all the essential proteins that govern virus egress from the host cell and initiation of replication in the target cell. It has been known for some time that influenza virions contain nine viral proteins; however, analyses of other enveloped viruses have revealed that proteins from the host cell can also be detected in virions. To address whether the same is true for influenza virus, we used two complementary mass spectrometry approaches to perform a comprehensive proteomic analysis of purified influenza virus particles. In addition to the aforementioned nine virus-encoded proteins, we detected the presence of 36 host-encoded proteins. These include both cytoplasmic and membrane-bound proteins that can be grouped into several functional categories, such as cytoskeletal proteins, annexins, glycolytic enzymes, and tetraspanins. Interestingly, a significant number of these have also been reported to be present in virions of other virus families. Protease treatment of virions combined with immunoblot analysis was used to verify the presence of the cellular protein and also to determine whether it is located in the core of the influenza virus particle. Immunogold labeling confirmed the presence of membrane-bound host proteins on the influenza virus envelope. The identification of cellular constituents of influenza virions has important implications for understanding the interactions of influenza virus with its host and brings us a step closer to defining the cellular requirements for influenza virus replication. While not all of the host proteins are necessarily incorporated specifically, those that are and are found to have an essential role represent novel targets for antiviral drugs and for attenuation of viruses for vaccine purposes

    Emerging concepts in biomarker discovery; The US-Japan workshop on immunological molecular markers in oncology

    Get PDF
    Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations

    Pathogen recognition by NK cells amplifies the pro-inflammatory cytokine production of monocyte-derived DC via IFN-Îł

    No full text
    Abstract Background Besides their prominent role in the elimination of infected or malignantly transformed cells, natural killer (NK) cells serve as modulators of adaptive immune responses. Enhancing bidirectional crosstalk between NK cells and dendritic cells (DC) is considered a promising tool to potentiate cancer vaccines. We investigated to what extent direct sensing of viral and bacterial motifs by NK cells contributes to the response of inflammatory DC against the same pathogenic stimulus. Results We demonstrated that sensing of bacterial and viral PAMPs by NK cells contributes to DC cytokine production via NK cell-derived soluble factors. This enhancement of DC cytokine production was dependent on the pattern recognition receptor (PRR) agonist but also on the cytokine environment in which NK cells recognized the pathogen, indicating the importance of accessory cell activation for this mechanism. We showed in blocking experiments that NK cell-mediated amplification of DC cytokine secretion is dependent on NK cell-derived IFN-γ irrespective of the PRR that is sensed by the NK cell. Conclusions These findings illustrate the importance of bidirectional interaction between different PRR-expressing immune cells, which can have implications on the selection of adjuvants for vaccination strategies

    Male territorial aggression and androgen modulation in high latitude populations of the Sooty, Passerella iliaca sinuosa, and Red Fox Sparrow, Passerella iliaca zaboria

    No full text
    The Fox Sparrows, Passerella iliaca, include multiple groups and subspecies distributed at several latitudes from the Alaskan arctic to the southwestern United States. As such, this species represents a potential model for investigating latitudinal variation in androgen secretion and aggressive territoriality in male passerines. Breeding male Fox Sparrows from two subspecies within two groups, the Sooty Fox Sparrow, P. i. sinuosa, and the Red Fox Sparrow, P. i. zaboria, were assessed for aggressive territoriality and androgen responsiveness at multiple latitudes in arctic and subarctic Alaska. Subarctic Sooty Fox Sparrows had higher circulating androgen levels in the early (8.54 ng/ml) versus mid–late breeding season (2.44 ng/ml). Males in the mid–late breeding season did not up-regulate androgen secretion in response to social challenge, but were aggressive and spent more time within 5 m of a decoy during a simulated territorial intrusion (STI) than early breeding males. Male subarctic Red Fox Sparrows had slightly higher circulating androgen levels (2.29 ng/ml) than arctic males (1.10 ng/ml) in the mid–late breeding season. However, androgen levels were not correlated with blood collection time after a social challenge in either group, suggesting that neither arctic nor subarctic males up-regulate androgen secretion during the mid–late breeding period. Arctic males spent more time within 5 m of a decoy and sang less than subarctic males during an STI in the mid–late breeding season. These findings demonstrate that the Fox Sparrow is a tractable model for investigating the latitudinal regulation of aggressive territoriality and androgen responsiveness in passerines

    Polyinosinic polycytidylic acid prevents efficient antigen expression after mRNA electroporation of clinical grade dendritic cells.

    No full text
    Contains fulltext : 79503.pdf (publisher's version ) (Closed access)Tumor-derived peptides are used frequently as antigen (Ag) source in dendritic cell (DC) therapy in cancer patients. An alternative is to load DC with tumor-associated Ag (TAA)-encoding RNA. RNA-loading obviates prior knowledge of CTL and Th epitopes in the Ag. Multiple epitopes for many HLA alleles (both MHC class I and class II) are encoded by the RNA and loading is independent of the patient's HLA make-up. Herein, we determined the optimal conditions for mRNA-electroporation of monocyte-derived DC for clinical application in relation to different maturation cocktails. The data demonstrate that TAA carcinoembryonic antigen, gp100 and tyrosinase are expressed already 30 min after electroporation with the encoding mRNA. Moreover, gp100-specific CTL are activated by gp100 mRNA-electroporated DC. Importantly, we show here that the presence of polyinosinic-polycytidylic acid [poly(I:C)] in the maturation cocktail prevents effective protein expression of the electroporated mRNA as well as subsequent CTL recognition. This effect of poly(I:C) correlates with the induction of IFN-induced genes and innate anti-viral effector molecules in DC. Together these data show that electroporation of mature DC with TAA-encoding mRNA is attractive for use in DC vaccination protocols in cancer patients, but protein expression should be tested for each maturation cocktail

    Regulatory NK-Cell Functions in Inflammation and Autoimmunity

    No full text
    Natural killer (NK) cells were viewed traditionally as cytotoxic effector cells whose rapid killing of infected and transformed cells without preactivation provides a first line of defense prior to the initiation of an adaptive immune response against infection and tumor development. However, it has become clear that NK cells interact with various components of the immune system, and therefore have the potential to function as regulatory cells. While NK cells can assist in dendritic cell (DC) maturation and T-cell polarization, increasing evidence indicates that NK cells can also prevent and limit adaptive (auto) immune responses via killing of autologous myeloid and lymphoid cells. Investigating immunoregulatory NK-cell functions might generate exciting insights into the reciprocal regulation between NK-cell–mediated innate immunity and adaptive immune responses, improve our capacity to monitor these cells as surrogate markers for disease activity and treatment responses in autoimmune diseases, and, perhaps, provide new prospects for NK cell-directed therapies
    corecore