37 research outputs found

    Ethanol reversal of tolerance to the respiratory depressant effects of morphine

    Get PDF
    Opioids are the most common drugs associated with unintentional drug overdose. Death results from respiratory depression. Prolonged use of opioids results in the development of tolerance but the degree of tolerance is thought to vary between different effects of the drugs. Many opioid addicts regularly consume alcohol (ethanol), and post-mortem analyses of opioid overdose deaths have revealed an inverse correlation between blood morphine and ethanol levels. In the present study, we determined whether ethanol reduced tolerance to the respiratory depressant effects of opioids. Mice were treated with opioids (morphine, methadone, or buprenorphine) for up to 6 days. Respiration was measured in freely moving animals breathing 5% CO(2) in air in plethysmograph chambers. Antinociception (analgesia) was measured as the latency to remove the tail from a thermal stimulus. Opioid tolerance was assessed by measuring the response to a challenge dose of morphine (10 mg/kg i.p.). Tolerance developed to the respiratory depressant effect of morphine but at a slower rate than tolerance to its antinociceptive effect. A low dose of ethanol (0.3 mg/kg) alone did not depress respiration but in prolonged morphine-treated animals respiratory depression was observed when ethanol was co-administered with the morphine challenge. Ethanol did not alter the brain levels of morphine. In contrast, in methadone- or buprenorphine-treated animals no respiratory depression was observed when ethanol was co-administered along with the morphine challenge. As heroin is converted to morphine in man, selective reversal of morphine tolerance by ethanol may be a contributory factor in heroin overdose deaths

    Methylation of HOXA9 and ISL1 predicts patient outcome in high-grade non-invasive bladder cancer

    Get PDF
    Introduction Inappropriate DNA methylation is frequently associated with human tumour development, and in specific cases, is associated with clinical outcomes. Previous reports of DNA methylation in low/intermediate grade non-muscle invasive bladder cancer (NMIBC) have suggested that specific patterns of DNA methylation may have a role as diagnostic or prognostic biomarkers. In view of the aggressive and clinically unpredictable nature of high-grade (HG) NMIBC, and the current shortage of the preferred treatment option (Bacillus:Calmette-Guerin), novel methylation analyses may similarly reveal biomarkers of disease outcome that could risk-stratify patients and guide clinical management at initial diagnosis. Methods Promoter-associated CpG island methylation was determined in primary tumour tissue of 36 initial presentation high-grade NMIBCs, 12 low/intermediate-grade NMIBCs and 3 normal bladder controls. The genes HOXA9, ISL1, NKX6-2, SPAG6, ZIC1 and ZNF154 were selected for investigation on the basis of previous reports and/or prognostic utility in low/intermediate-grade NMIBC. Methylation was determined by Pyrosequencing of sodium-bisulphite converted DNA, and then correlated with gene expression using RT-qPCR. Methylation was additionally correlated with tumour behaviour, including tumour recurrence and progression to muscle invasive bladder cancer or metastases. Results The ISL1 genes’ promoter-associated island was more frequently methylated in recurrent and progressive high-grade tumours than their non-recurrent counterparts (60.0% vs. 18.2%, p = 0.008). ISL1 and HOXA9 showed significantly higher mean methylation in recurrent and progressive tumours compared to non-recurrent tumours (43.3% vs. 20.9%, p = 0.016 and 34.5% vs 17.6%, p = 0.017, respectively). Concurrent ISL1/HOXA9 methylation in HG-NMIBC reliably predicted tumour recurrence and progression within one year (Positive Predictive Value 91.7%), and was associated with disease-specific mortality (DSM). Conclusions In this study we report methylation differences and similarities between clinical sub-types of high-grade NMIBC. We report the potential ability of methylation biomarkers, at initial diagnosis, to predict tumour recurrence and progression within one year of diagnosis. We found that specific biomarkers reliably predict disease outcome and therefore may help guide patient treatment despite the unpredictable clinical course and heterogeneity of high-grade NMIBC. Further investigation is required, including validation in a larger patient cohort, to confirm the clinical utility of methylation biomarkers in high-grade NMIBC

    Transport of Pb and Zn by carboxylate complexes in basinal ore fluids and related petroleum-field brines at 100°C: the influence of pH and oxygen fugacity

    Get PDF
    It is well established through field observations, experiments, and chemical models that oxidation (redox) state and pH exert a strong influence on the speciation of dissolved components and the solubility of minerals in hydrothermal fluids. log [Image: see text] –pH diagrams were used to depict the influence of oxygen fugacity and pH on monocarboxylate- and dicarboxylate-transport of Pb and Zn in low-temperature (100°C) hydrothermal ore fluids that are related to diagenetic processes in deep sedimentary basins, and allow a first-order comparison of Pb and Zn transport among proposed model fluids for Mississippi Valley-type (MVT) and red-bed related base metal (RBRBM) deposits in terms of their approximate pH and [Image: see text] conditions. To construct these diagrams, total Pb and Zn concentrations and Pb and Zn speciation were calculated as a function of log [Image: see text] and pH for a composite ore-brine with concentrations of major elements, total sulfur, and total carbonate that approximate the composition of MVT and RBRBM model ore fluids and modern basinal brines. In addition to acetate and malonate complexation, complexes involving the ligands Cl(-), HS(-), H(2)S, and OH(- )were included in the model of calculated total metal concentration and metal speciation. Also, in the model, Zn and Pb are competing with the common-rock forming metals Ca, Mg, Na, Fe, and Al for the same ligands. Calculated total Pb concentration and calculated total Zn concentration are constrained by galena and sphalerite solubility, respectively. Isopleths, in log [Image: see text] –pH space, of the concentration of Pb and concentration of Zn in carboxylate (acetate + malonate) complexes illustrate that the oxidized model fluids of T. H. Giordano (in Organic Acids in Geological Processes, ed. E. D. Pittman and M. D. Lewan, Springer-Verlag, New York, 1994, pp. 319–354) and G. M. Anderson (Econ. Geol., 1975, 70, 937–942) are capable of transporting sufficient amounts of Pb (up to 10 ppm) and Zn (up to 100 ppm) in the form of carboxylate complexes to form economic deposits of these metals. On the other hand, the reduced ore fluid models of D. A. Sverjensky (Econ. Geol., 1984, 79, 23–37) and T. H. Giordano and H. L. Barnes (Econ. Geol., 1981, 76, 2200–2211) can at best transport amounts of Pb and Zn, as carboxylate complexes, that are many orders of magnitude below the 1 to 10 ppm minimum required to form economic deposits. Lead and zinc speciation (mol% of total Pb or Zn) in the model ore fluid was calculated at specific log [Image: see text] –pH conditions along the 100, 0.01, and 0.001 ppm total Pb and total Zn isopleths. Along the 100 ppm isopleth conditions are oxidized (∑SO(4 )>> ∑H(2)S) with Pb and Zn predominantly in the form of chloride complexes under acid to mildly alkaline conditions (pH from 3 to approximately 7.5), while hydroxide complexes dominate Pb and Zn speciation under more alkaline conditions. Sulfide complexes are insignificant under these oxidized conditions. For more reduced conditions along the 0.01 and 0.001 ppm isopleths chloride complexes dominate Pb and Zn speciation in the SO(4)(2- )field and near the SO(4)(2-)-reduced sulfur boundary from pH = 4 to approximately 7.5, while hydroxide complexes dominate Pb and Zn speciation under alkaline conditions above pH = 7.5 in the SO(4)(2- )field. In the most reduced fluids (∑H(2)S >> ∑SO(4)) along the 0.01 and 0.001 isopleths, sulfide complexes account for almost 100% of the Pb and Zn in the model fluid. Acetate (monocarboxylate) complexation is significant only under conditions of chloride and hydroxide complex dominance and its effect is maximized in the pH range 5 to 7, where it complexes 2 to 2.6% of the total Pb and 1 to 1.25% of the total Zn. Malonate (dicarboxylate) complexes are insignificant along all isopleths. The speciation results from this study show that deep formation waters characterized by temperatures near 100°C, high oxidation states and ∑H(2)S < 0.03 mg L(-1 )([Image: see text] < 10(-6)), high chlorinities (~ 100000 mg L(-1)), and high but reasonable concentrations of carboxylate anions can mobilize up to 3% of the total Pb and up to 1.3% of the total Zn as carboxylate complexes. Furthermore, these percentages, under the most favorable conditions, correspond to approximately 1 to 100 ppm of these metals in solution; concentrations that are adequate to form economic deposits of these metals. However, the field evidence suggests that all of these optimum conditions for carboxylate complexation are rarely met at the same time. A comparison of the composite ore fluid compositions from this study and modern brine data shows that the ore brines, corresponding to log [Image: see text] –pH conditions based on the Anderson (1975) and Giordano (1994) model fluids, are similar in many respects to modern, high trace-metal petroleum-field brines. The principal differences between modern high trace-metal brines and the composite ore fluids of Anderson (1975) and Giordano (1994) relate to their carboxylate anion content. The reported concentrations of monocarboxylate anions (∑monocbx) and dicarboxylate anions (Edicbx) in high trace-metal petroleum-field brines (< 1 to 300 mg L(-1 )and < 1 mg L(-1), respectively) are significantly lower than the concentrations assumed in the modelled brines of this study (∑monocbx = 7 700 mg L(-1 )and ∑dicbx = 300 mg L(-1)). There are also major differences in the corresponding total chloride to carboxylate ratio (∑m(Cl)/∑m(cbx)) and monocarboxylate to dicarboxylate ratio (∑m(monocbx)/∑m(dicbx)). Modern high trace-metal brines have much higher ∑m(Cl)/∑m(cbx )values and, therefore, the contribution of carboxylate complexes to the total Pb and Zn content in these modern brines is likely to be significantly less than the 1 to 3 percent for the composite ore fluids of Anderson (1975) and Giordano (1994). The composite ore-brine based on the Giordano and Barnes (1981) MVT ore fluid is comparable to the high salinity (> 170 000 mg L(-1 )TDS) subset of modern brines characterized by low trace-metal content and high total reduced sulfur (∑H(2)S). A comparison of the Sverjensky (1984) composite ore-brine with modern petroleum-field brines in terms of ∑H(2)S and Zn content, reveals that this ore fluid corresponds to a "border-type" brine, between modern high trace-metal brines and those with low trace-metal content and high ∑H(2)S. A brine of this type is characterized by values of ∑H(2)S, ∑Zn, and/or ∑Pb within or near the 1 to 10 mg L(-1 )range. Based on brine-composition data from numerous references cited in this paper, border-type brines do exist but are rare. The model results and field evidence presented in this study are consistent with other chemical simulation studies of carboxylate complexation in modern petroleum-field brines. Thus, it appears that carboxylate complexation plays a minor, if not insignificant, role as a transport mechanism for Pb and Zn in high salinity Na–Cl and Na–Ca–Cl basinal brines and related ore fluids

    Branch Points and Free Actions On ℝ-Trees

    No full text

    Automatic Groups and Amalgams — A Survey

    No full text
    corecore