43 research outputs found

    Percentage density, Wolfe's and Tabár's mammographic patterns: agreement and association with risk factors for breast cancer

    Get PDF
    INTRODUCTION: The purpose of this report was to classify mammograms according to four methods and to examine their agreement and their relationship to selected risk factors for breast cancer. METHOD: Mammograms and epidemiological data were collected from 987 women, aged 55 to 71 years, attending the Norwegian Breast Cancer Screening Program. Two readers each classified the mammograms according to a quantitative method (Cumulus or Madena software) and one reader according to two qualitative methods (Wolfe and Tabár patterns). Mammograms classified in the reader-specific upper quartile of percentage density, Wolfe's P2 and DY patterns, or Tabár's IV and V patterns, were categorized as high-risk density patterns and the remaining mammograms as low-risk density patterns. We calculated intra-reader and inter-reader agreement and estimated prevalence odds ratios of having high-risk mammographic density patterns according to selected risk factors for breast cancer. RESULTS: The Pearson correlation coefficient was 0.86 for the two quantitative density measurements. There was moderate agreement between the Wolfe and Tabár classifications (Kappa = 0.51; 95% confidence interval 0.46 to 0.56). Age at screening, number of children and body mass index (BMI) showed a statistically significant inverse relationship with high-risk density patterns for all four methods (all P < 0.05). After adjustment for percentage density, the Wolfe classification was not associated with any of the risk factors for breast cancer, whereas the association with number of children and BMI remained statistically significant for the Tabár classification. Adjustment for Wolfe or Tabár patterns did not alter the associations between these risk factors and percentage mammographic density. CONCLUSION: The four assessments methods seem to capture the same overall associations with risk factors for breast cancer. Our results indicate that the quantitative methods convey additional information over the qualitative methods

    Application of 3D Zernike descriptors to shape-based ligand similarity searching

    Get PDF
    Background: The identification of promising drug leads from a large database of compounds is an important step in the preliminary stages of drug design. Although shape is known to play a key role in the molecular recognition process, its application to virtual screening poses significant hurdles both in terms of the encoding scheme and speed. Results: In this study, we have examined the efficacy of the alignment independent three-dimensional Zernike descriptor (3DZD) for fast shape based similarity searching. Performance of this approach was compared with several other methods including the statistical moments based ultrafast shape recognition scheme (USR) and SIMCOMP, a graph matching algorithm that compares atom environments. Three benchmark datasets are used to thoroughly test the methods in terms of their ability for molecular classification, retrieval rate, and performance under the situation that simulates actual virtual screening tasks over a large pharmaceutical database. The 3DZD performed better than or comparable to the other methods examined, depending on the datasets and evaluation metrics used. Reasons for the success and the failure of the shape based methods for specific cases are investigated. Based on the results for the three datasets, general conclusions are drawn with regard to their efficiency and applicability

    The Interleukin-6 inflammation pathway from cholesterol to aging – Role of statins, bisphosphonates and plant polyphenols in aging and age-related diseases

    Get PDF
    We describe the inflammation pathway from Cholesterol to Aging. Interleukin 6 mediated inflammation is implicated in age-related disorders including Atherosclerosis, Peripheral Vascular Disease, Coronary Artery Disease, Osteoporosis, Type 2 Diabetes, Dementia and Alzheimer's disease and some forms of Arthritis and Cancer. Statins and Bisphosphonates inhibit Interleukin 6 mediated inflammation indirectly through regulation of endogenous cholesterol synthesis and isoprenoid depletion. Polyphenolic compounds found in plants, fruits and vegetables inhibit Interleukin 6 mediated inflammation by direct inhibition of the signal transduction pathway. Therapeutic targets for the control of all the above diseases should include inhibition of Interleukin-6 mediated inflammation

    Microbiome to Brain:Unravelling the Multidirectional Axes of Communication

    Get PDF
    The gut microbiome plays a crucial role in host physiology. Disruption of its community structure and function can have wide-ranging effects making it critical to understand exactly how the interactive dialogue between the host and its microbiota is regulated to maintain homeostasis. An array of multidirectional signalling molecules is clearly involved in the host-microbiome communication. This interactive signalling not only impacts the gastrointestinal tract, where the majority of microbiota resides, but also extends to affect other host systems including the brain and liver as well as the microbiome itself. Understanding the mechanistic principles of this inter-kingdom signalling is fundamental to unravelling how our supraorganism function to maintain wellbeing, subsequently opening up new avenues for microbiome manipulation to favour desirable mental health outcome

    The life and scientific work of William R. Evitt (1923-2009)

    Get PDF
    Occasionally (and fortunately), circumstances and timing combine to allow an individual, almost singlehandedly, to generate a paradigm shift in his or her chosen field of inquiry. William R. (‘Bill’) Evitt (1923-2009) was such a person. During his career as a palaeontologist, Bill Evitt made lasting and profound contributions to the study of both dinoflagellates and trilobites. He had a distinguished, long and varied career, researching first trilobites and techniques in palaeontology before moving on to marine palynomorphs. Bill is undoubtedly best known for his work on dinoflagellates, especially their resting cysts. He worked at three major US universities and spent a highly significant period in the oil industry. Bill's early profound interest in the natural sciences was actively encouraged both by his parents and at school. His alma mater was Johns Hopkins University where, commencing in 1940, he studied chemistry and geology as an undergraduate. He quickly developed a strong vocation in the earth sciences, and became fascinated by the fossiliferous Lower Palaeozoic strata of the northwestern United States. Bill commenced a PhD project on silicified Middle Ordovician trilobites from Virginia in 1943. His doctoral research was interrupted by military service during World War II; Bill served as an aerial photograph interpreter in China in 1944 and 1945, and received the Bronze Star for his excellent work. Upon demobilisation from the US Army Air Force, he resumed work on his PhD and was given significant teaching duties at Johns Hopkins, which he thoroughly enjoyed. He accepted his first professional position, as an instructor in sedimentary geology, at the University of Rochester in late 1948. Here Bill supervised his first two graduate students, and shared a great cameraderie with a highly motivated student body which largely comprised World War II veterans. At Rochester, Bill continued his trilobite research, and was the editor of the Journal of Paleontology between 1953 and 1956. Seeking a new challenge, he joined the Carter Oil Company in Tulsa, Oklahoma, during 1956. This brought about an irrevocable realignment of his research interests from trilobites to marine palynology. He undertook basic research on aquatic palynomorphs in a very well-resourced laboratory under the direction of one of his most influential mentors, William S. ‘Bill’ Hoffmeister. Bill Evitt visited the influential European palynologists Georges Deflandre and Alfred Eisenack during late 1959 and, while in Tulsa, first developed several groundbreaking hypotheses. He soon realised that the distinctive morphology of certain fossil dinoflagellates, notably the archaeopyle, meant that they represent the resting cyst stage of the life cycle. The archaeopyle clearly allows the excystment of the cell contents, and comprises one or more plate areas. Bill also concluded that spine-bearing palynomorphs, then called hystrichospheres, could be divided into two groups. The largely Palaeozoic spine-bearing palynomorphs are of uncertain biological affinity, and these were termed acritarchs. Moreover, he determined that unequivocal dinoflagellate cysts are all Mesozoic or younger, and that the fossil record of dinoflagellates is highly selective. Bill was always an academic at heart and he joined Stanford University in 1962, where he remained until retiring in 1988. Bill enjoyed getting back into teaching after his six years in industry. During his 26-year tenure at Stanford, Bill continued to revolutionise our understanding of dinoflagellate cysts. He produced many highly influential papers and two major textbooks. The highlights include defining the acritarchs and comprehensively documenting the archaeopyle, together with highly detailed work on the morphology of Nannoceratopsis and Palaeoperidinium pyrophorum using the scanning electron microscope. Bill supervised 11 graduate students while at Stanford University. He organised the Penrose Conference on Modern and Fossil Dinoflagellates in 1978, which was so successful that similar meetings have been held about every four years since that inaugural symposium. Bill also taught many short courses on dinoflagellate cysts aimed at the professional community. Unlike many eminent geologists, Bill actually retired from actively working in the earth sciences. His full retirement was in 1988; after this he worked on only a small number of dinoflagellate cyst projects, including an extensive paper on the genus Palaeoperidinium

    Natural environments, ancestral diets, and microbial ecology: is there a modern “paleo-deficit disorder”? Part II

    Get PDF

    Centrifuge Techniques Used in Micropalaeontology

    No full text

    Aspirin induces apoptosis in oesophageal cancer cells by inhibiting the pathway of NF-kappaB downstream regulation of cyclooxygenase-2

    No full text
    BackgroundAspirin has potential in the prevention or treatment of oesophageal cancer, the seventh most common cancer in the world, but its mechanism of action is still not certain.MethodsThe oesophageal squamous cell carcinoma cell line TE-13 was cultured with aspirin at different concentrations or for different times. Proliferation and apoptosis were measured by MTT reduction and flow cytometry. Expression of COX-2 mRNA was measured by RT-PCR and COX-2 protein levels with Western blot analysis. Nuclear NF-kappaB and cytoplasmic IkappaB protein levels were determined by electrophoretic mobility shift assay and Western blot, respectively.ResultsAspirin significantly inhibited cell proliferation and induced apoptosis at concentrations of 1, 4, 8 mmol/L. Aspirin dose-dependently decreased the levels of COX-2 mRNA, COX-2 protein and nuclear NF-kappaB protein and increased the cytoplasmic IkappaB protein.ConclusionWe conclude that aspirin inhibits the proliferation of, and induced apoptosis in, the cultured TE-13 SCC cell line. These changes correlate with a reduction in COX-2 mRNA and protein expression, prostaglandin synthesis, an inhibition of NF-kappaB nuclear translocation, and an increase in cytoplasmic IkappaB. These results support the further investigation of the cyclooxygenase pathway in investigating the potential of aspirin and similar drugs in cancer prevention and therapy.Jun-Feng Liu, Glyn G. Jamieson, Paul A. Drew, Gui-Jun Zhu, Shao-Wei Zhang, Tie-Nian Zhu, Bao-En Shan, Qi-Zhang Wan
    corecore