84 research outputs found

    Positive predictive value of automated database records for diabetic ketoacidosis (DKA) in children and youth exposed to antipsychotic drugs or control medications: a tennessee medicaid study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetic ketoacidosis (DKA) is a potentially life-threatening complication of treatment with some atypical antipsychotic drugs in children and <b>youth</b>. Because drug-associated DKA is rare, large automated health outcomes databases may be a valuable data source for conducting pharmacoepidemiologic studies of DKA associated with exposure to individual antipsychotic drugs. However, no validated computer case definition of DKA exists. We sought to assess the positive predictive value (PPV) of a computer case definition to detect incident cases of DKA, using automated records of Tennessee Medicaid as the data source and medical record confirmation as a "gold standard."</p> <p>Methods</p> <p>The computer case definition of DKA was developed from a retrospective cohort study of antipsychotic-related type 2 diabetes mellitus (1996-2007) in Tennessee Medicaid enrollees, aged 6-24 years. Thirty potential cases with any DKA diagnosis (ICD-9 250.1, ICD-10 E1x.1) were identified from inpatient encounter claims. Medical records were reviewed to determine if they met the clinical definition of DKA.</p> <p>Results</p> <p>Of 30 potential cases, 27 (90%) were successfully abstracted and adjudicated. Of these, 24 cases were confirmed by medical record review (PPV 88.9%, 95% CI 71.9 to 96.1%). Three non-confirmed cases presented acutely with severe hyperglycemia, but had no evidence of acidosis.</p> <p>Conclusions</p> <p>Diabetic ketoacidosis in children and youth can be identified in a computerized Medicaid database using our case definition, which could be useful for automated database studies in which drug-associated DKA is the outcome of interest.</p

    Expression of estrogen receptors in the hypothalamo-pituitary-ovarian axis in middle-aged rats after re-instatement of estrus cyclicity

    Get PDF
    During reproductive aging female rats enter an anovulatory state of persistent estrus (PE). In an animal model of re-instatement of estrus cyclicity in middle-aged PE rats we injected the animals with progesterone (0.5 mg progesterone/kg body weight) at 12:00 for 4 days whereas control animals received corn oil injections. After the last injection animals were analyzed at 13:00 and 17:00. Young regular cycling rats served as positive controls and were assessed at 13:00 and 17:00 on proestrus. Progesterone treatment of middle-aged PE rats led to occurrence of luteinizing hormone (LH), follicle stimulating hormone (FSH), and prolactin surges in a subset of animals that were denoted as responders. Responding middle-aged rats displayed a reduction of ER-β mRNA in the preoptic area which was similar to the effect in young rats. Within the mediobasal hypothalamus, only young rats showed a decline of ER-α mRNA expression. A decrease of ER-α mRNA levels in the pituitary was observed in progesterone-responsive rats and in young animals. ER-β mRNA expression was reduced in young regular cycling rats. ER-β mRNA levels in the ovary were reduced following progesterone treatment in PE rats and in young rats. Taken together our data show that cyclic administration of progesterone reinstates ovulatory cycles in intact aging females which have already lost their ability to display spontaneous cyclicity. This treatment leads to the occurrence of preovulatory LH, FSH and prolactin surges which are accompanied by differential modulation of ERs in the hypothalamus, the pituitary and the ovary

    Genome Analysis of Planctomycetes Inhabiting Blades of the Red Alga

    Get PDF
    Porphyra is a macrophytic red alga of the Bangiales that is important ecologically and economically. We describe the genomes of three bacteria in the phylum Planctomycetes (designated P1, P2 and P3) that were isolated from blades of Porphyra umbilicalis (P.um.1). These three Operational Taxonomic Units (OTUs) belong to distinct genera; P2 belongs to the genus Rhodopirellula, while P1 and P3 represent undescribed genera within the Planctomycetes. Comparative analyses of the P1, P2 and P3 genomes show large expansions of distinct gene families, which can be widespread throughout the Planctomycetes (e.g., protein kinases, sensors/response regulators) and may relate to specific habitat (e.g., sulfatase gene expansions in marine Planctomycetes) or phylogenetic position. Notably, there are major differences among the Planctomycetes in the numbers and sub-functional diversity of enzymes (e.g., sulfatases, glycoside hydrolases, polysaccharide lyases) that allow these bacteria to access a range of sulfated polysaccharides in macroalgal cell walls. These differences suggest that the microbes have varied capacities for feeding on fixed carbon in the cell walls of P.um.1 and other macrophytic algae, although the activities among the various bacteria might be functionally complementary in situ. Additionally, phylogenetic analyses indicate augmentation of gene functions through expansions arising from gene duplications and horizontal gene transfers; examples include genes involved in cell wall degradation (e.g., κ-carrageenase, alginate lyase, fucosidase) and stress responses (e.g., efflux pump, amino acid transporter). Finally P1 and P2 contain various genes encoding selenoproteins, many of which are enzymes that ameliorate the impact of environmental stresses that occur in the intertidal habitat

    The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes

    Get PDF

    Verticillium wilt of olive: a case study to implement an integrated strategy to control a soil-borne pathogen

    Full text link

    Memory effects and microscale

    No full text
    corecore