24 research outputs found

    Changes of dendritic cells and fractalkine in type 2 diabetic patients with unstable angina pectoris: a preliminary report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been shown that dendritic cells (DCs) and fractalkine play a role in accelerating progression of the inflamed atherosclerotic lesions and plaque rupture. We evaluated the numbers and functional changes of DCs and its subsets in human type 2 diabetes with or without unstable angina pectoris (UAP).</p> <p>Methods</p> <p>The study population consisted of 39 diabetic patients (DM:18 without CAD; DM + UAP: 21 with UAP), 18 non-diabetic UAP patients (UAP), and 15 healthy control (Normal). Peripheral blood DCs and its subsets were measured by three color flow cytometry. Serum levels of fractalkine, IL-12, and IFN-Ī± were also measured. The functional status of the monocyte-derived DCs was analyzed by flow cytometry and allogeneic mixed T lymphocytes reaction.</p> <p>Results</p> <p>The percent and absolute numbers of DCs and mDC within the total leukocyte population was similar for Normal and DM, while significantly lower in DM + UAP. pDC numbers were not significantly altered. Serum fractalkine in DM + UAP was highest among the four groups (<it>p </it>= 0.04 vs. UAP, <it>p </it>= 0.0003 vs. DM, <it>p </it>< 0.0001 vs. Normal). Circulating mDC inversely correlated with serum fractalkine (r = -0.268, <it>p </it>= 0.01) level. Compared with DM and UAP, the costimulatory molecules CD86 and proliferation of T cells stimulated by DCs were significantly increased in DM + UAP group.</p> <p>Conclusions</p> <p>Our study suggested that increases in the fractalkine level and the number and functional changes of blood DCs might contribute to diabetic coronary atherosclerosis and plaque destabilization.</p

    Dyslipidemia in diffuse large B-cell lymphoma based on the genetic subtypes: a single-center study of 259 Chinese patients

    Get PDF
    BackgroundDiffuse large B-cell lymphoma (DLBCL) is a kind of highly heterogeneous non-Hodgkin lymphoma, both in clinical and genetic terms. DLBCL is admittedly categorized into six subtypes by genetics, which contain MCD, BN2, EZB, N1, ST2, and A53. Dyslipidemia is relevant to a multitude of solid tumors and has recently been reported to be associated with hematologic malignancies. We aim to present a retrospective study investigating dyslipidemia in DLBCL based on the molecular subtypes.ResultsThis study concluded that 259 patients with newly diagnosed DLBCL and their biopsy specimens were available for molecular typing. Results show that the incidence of dyslipidemia (87.0%, p &lt;0.001) is higher in the EZB subtype than in others, especially hypertriglyceridemia (78.3%, p = 0.001) in the EZB subtype. Based on the pathological gene-sequencing, patients with BCL2 gene fusion mutation are significantly correlative with hyperlipidemia (76.5%, p = 0.006) and hypertriglyceridemia (88.2%, p = 0.002). Nevertheless, the occurrence of dyslipidemia has no remarkable influence on prognosis.ConclusionIn summary, dyslipidemia correlates with genetic heterogeneity in DLBCL without having a significant influence on survival. This research first connects lipids and genetic subtypes in DLBCL

    Development of a geometry-based respiratory motionsimulating patient model for radiation treatement dosimetry

    No full text
    Temporal and spatial anatomic changes caused by respiration during radiation treatment delivery can lead to discrepancies between prescribed and actual radiation doses. The present paper documents a study to construct a respiratory-motionsimulating, four-dimensional (4D) anatomic and dosimetry model for the study of the dosimetric effects of organ motion for various radiation treatment plans and delivery strategies. The non-uniform rational B-splines (NURBS) method has already been used to reconstruct a three-dimensional (3D) VIP-Man (ā€œvisible photographic manā€) model that can reflect the deformation of organs during respiration by using time-dependent equations to manipulate surface control points. The EGS4 (Electron Gamma Shower, version 4) Monte Carlo code is then used to apply the 4D model to dose simulation. We simulated two radiation therapy delivery scenarios: gating treatment and 4D image-guided treatment. For each delivery scenario, we developed one conformal plan and one intensity-modulated radiation therapy plan. A lesion in the left lung was modeled to investigate the effect of respiratory motion on radiation dose distributions. Based on target doseā€“volume histograms, the importance of using accurate gating to improve the dose distribution is demonstrated. The results also suggest that, during 4D image-guided treatment delivery, monitoring of the patientā€™s breathing pattern is critical. This study demonstrates the potential of using a ā€œstandard ā€ motion-simulating patient model for 4D treatment planning and motion management
    corecore