1,477 research outputs found
Capacitance of Gated GaAs/AlGaAs Heterostructures Subject to In-plane Magnetic Fields
A detailed analysis of the capacitance of gated GaAs/AlGaAs heterostructures
is presented. The nonlinear dependence of the capacitance on the gate voltage
and in-plane magnetic field is discussed together with the capacitance quantum
steps connected with a population of higher 2D gas subbands. The results of
full self-consistent numerical calculations are compared to recent experimental
data.Comment: 4 pages, Revtex. 4 PostScript figures in an uuencoded compressed file
available upon request. Phys. Rev.B, in pres
Novel critical field in magneto-resistance oscillation of 2DEG in asymmetric GaAs/AlGaAs double wells measured as a function of the in-plane magnetic field
We have investigated the magnetoresistance of strongly asymmetric double-well
structures formed by a thin AlGaAs barrier grown far from the interface in the
GaAs buffer of standard heterostructures. In magnetic fields oriented parallel
to the electron layers, the magnetoresistance exhibits an oscillation
associated with the depopulation of the higher occupied subband and with the
field-induced transition into a decoupled bilayer. In addition, the increasing
field transfers electrons from the triangular to rectangular well and, at high
enough field value, the triangular well is emptied. Consequently, the
electronic system becomes a single layer which leads to a sharp step in the
density of electron states and to an additional minimum in the
magnetoresistance curve.Comment: 3 pages, 3 figure
Large Tunneling Anisotropic Magneto-Seebeck Effect in a CoPt|MgO|Pt Tunnel Junction
We theoretically investigate the Tunneling Anisotropic Magneto-Seebeck effect
in a realistically-modeled CoPt|MgO|Pt tunnel junction using coherent transport
calculations. For comparison we study the tunneling magneto-Seebeck effect in
CoPt|MgO|CoPt as well. We find that the magneto-Seebeck ratio of CoPt|MgO|Pt
exceeds that of CoPt|MgO|CoPt for small barrier thicknesses, reaching 175% at
room temperature. This result provides a sharp contrast to the
magnetoresistance, which behaves oppositely for all barrier thicknesses and
differs by one order of magnitude between devices. Here the magnetoresistance
results from differences in transmission brought upon by changing the tunnel
junction's magnetization configuration. The magneto-Seebeck effect results from
variations in asymmetry of the energy-dependent transmission instead. We report
that this difference in origin allows for CoPt|MgO|Pt to possess strong thermal
magnetic-transport anisotropy.Comment: 6 pages, 6 figure
Resistance spikes and domain wall loops in Ising quantum Hall ferromagnets
We explain the recent observation of resistance spikes and hysteretic
transport properties in Ising quantum Hall ferromagnets in terms of the unique
physics of their domain walls. Self-consistent RPA/Hartree-Fock theory is
applied to microscopically determine properties of the ground state and
domain-wall excitations. In these systems domain wall loops support
one-dimensional electron systems with an effective mass comparable to the bare
electron mass and may carry charge. Our theory is able to account
quantitatively for the experimental Ising critical temperature and to explain
characteristics of the resistive hysteresis loops.Comment: 4 pages, 3 figure
Longitudinal conductivity and transverse charge redistribution in coupled quantum wells subject to in-plane magnetic fields
In double quantum wells electrons experience a Lorentz force oriented
perpendicular to the structure plane when an electric current is driven
perpendicular to the direction of an in-plane magnetic field. Consequently, the
excess charge is accumulated in one of the wells. The polarization of a bilayer
electron system and the corresponding Hall voltage are shown to contribute
substantially to the in-plane conductivity.Comment: 3 pages, 2 figure
Molecular Beam Epitaxy of LiMnAs
We report on the molecular beam epitaxy (MBE) growth of high crystalline
quality LiMnAs. The introduction of a group-I alkali metal element Li with flux
comparable to fluxes of Mn and As has not caused any apparent damage to the MBE
system after as many as fifteen growth cycles performed on the system to date.Comment: 8 pages, 5 figure
In-plane Magnetic Field Dependent Magnetoresistance of Gated Asymmetric Double Quantum Wells
We have investigated experimentally the magnetoresistance of strongly
asymmetric double-wells. The structures were prepared by inserting a thin
AlGaAs barrier into the GaAs buffer layer of a standard
modulation-doped GaAs/AlGaAs heterostructure. The resulting
double-well system consists of a nearly rectangular well and of a triangular
well coupled by tunneling through the thin barrier. With a proper choice of the
barrier parameters one can control the occupancy of the two wells and of the
two lowest (bonding and antibonding) subbands. The electron properties can be
further influenced by applying front- or back-gate voltage.Comment: 4 pages, 5 figures, elsart/PHYEAUTH macros; to be presented on the
EP2DS-15 Conference in Nara, Japan. Revised version. To appear in Physica
Fast optical control of spin in semiconductor interfacial structures
We report on a picosecond-fast optical removal of spin polarization from a
self-confined photo-carrier system at an undoped GaAs/AlGaAs interface
possessing superior long-range and high-speed spin transport properties. We
employed a modified resonant spin amplification technique with unequal
intensities of subsequent pump pulses to experimentally distinguish the
evolution of spin populations originating from different excitation laser
pulses. We demonstrate that the density of spins, which is injected into the
system by means of the optical orientation, can be controlled by reducing the
electrostatic confinement of the system using an additional generation of
photocarriers. It is also shown that the disturbed confinement recovers within
hundreds of picoseconds after which spins can be again photo-injected into the
system
- …
