1,477 research outputs found

    Capacitance of Gated GaAs/AlGaAs Heterostructures Subject to In-plane Magnetic Fields

    Full text link
    A detailed analysis of the capacitance of gated GaAs/AlGaAs heterostructures is presented. The nonlinear dependence of the capacitance on the gate voltage and in-plane magnetic field is discussed together with the capacitance quantum steps connected with a population of higher 2D gas subbands. The results of full self-consistent numerical calculations are compared to recent experimental data.Comment: 4 pages, Revtex. 4 PostScript figures in an uuencoded compressed file available upon request. Phys. Rev.B, in pres

    Novel critical field in magneto-resistance oscillation of 2DEG in asymmetric GaAs/AlGaAs double wells measured as a function of the in-plane magnetic field

    Full text link
    We have investigated the magnetoresistance of strongly asymmetric double-well structures formed by a thin AlGaAs barrier grown far from the interface in the GaAs buffer of standard heterostructures. In magnetic fields oriented parallel to the electron layers, the magnetoresistance exhibits an oscillation associated with the depopulation of the higher occupied subband and with the field-induced transition into a decoupled bilayer. In addition, the increasing field transfers electrons from the triangular to rectangular well and, at high enough field value, the triangular well is emptied. Consequently, the electronic system becomes a single layer which leads to a sharp step in the density of electron states and to an additional minimum in the magnetoresistance curve.Comment: 3 pages, 3 figure

    Large Tunneling Anisotropic Magneto-Seebeck Effect in a CoPt|MgO|Pt Tunnel Junction

    Get PDF
    We theoretically investigate the Tunneling Anisotropic Magneto-Seebeck effect in a realistically-modeled CoPt|MgO|Pt tunnel junction using coherent transport calculations. For comparison we study the tunneling magneto-Seebeck effect in CoPt|MgO|CoPt as well. We find that the magneto-Seebeck ratio of CoPt|MgO|Pt exceeds that of CoPt|MgO|CoPt for small barrier thicknesses, reaching 175% at room temperature. This result provides a sharp contrast to the magnetoresistance, which behaves oppositely for all barrier thicknesses and differs by one order of magnitude between devices. Here the magnetoresistance results from differences in transmission brought upon by changing the tunnel junction's magnetization configuration. The magneto-Seebeck effect results from variations in asymmetry of the energy-dependent transmission instead. We report that this difference in origin allows for CoPt|MgO|Pt to possess strong thermal magnetic-transport anisotropy.Comment: 6 pages, 6 figure

    Resistance spikes and domain wall loops in Ising quantum Hall ferromagnets

    Full text link
    We explain the recent observation of resistance spikes and hysteretic transport properties in Ising quantum Hall ferromagnets in terms of the unique physics of their domain walls. Self-consistent RPA/Hartree-Fock theory is applied to microscopically determine properties of the ground state and domain-wall excitations. In these systems domain wall loops support one-dimensional electron systems with an effective mass comparable to the bare electron mass and may carry charge. Our theory is able to account quantitatively for the experimental Ising critical temperature and to explain characteristics of the resistive hysteresis loops.Comment: 4 pages, 3 figure

    Longitudinal conductivity and transverse charge redistribution in coupled quantum wells subject to in-plane magnetic fields

    Full text link
    In double quantum wells electrons experience a Lorentz force oriented perpendicular to the structure plane when an electric current is driven perpendicular to the direction of an in-plane magnetic field. Consequently, the excess charge is accumulated in one of the wells. The polarization of a bilayer electron system and the corresponding Hall voltage are shown to contribute substantially to the in-plane conductivity.Comment: 3 pages, 2 figure

    Molecular Beam Epitaxy of LiMnAs

    Full text link
    We report on the molecular beam epitaxy (MBE) growth of high crystalline quality LiMnAs. The introduction of a group-I alkali metal element Li with flux comparable to fluxes of Mn and As has not caused any apparent damage to the MBE system after as many as fifteen growth cycles performed on the system to date.Comment: 8 pages, 5 figure

    In-plane Magnetic Field Dependent Magnetoresistance of Gated Asymmetric Double Quantum Wells

    Full text link
    We have investigated experimentally the magnetoresistance of strongly asymmetric double-wells. The structures were prepared by inserting a thin Al0.3_{0.3}Ga0.7_{0.7}As barrier into the GaAs buffer layer of a standard modulation-doped GaAs/Al0.3_{0.3}Ga0.7_{0.7}As heterostructure. The resulting double-well system consists of a nearly rectangular well and of a triangular well coupled by tunneling through the thin barrier. With a proper choice of the barrier parameters one can control the occupancy of the two wells and of the two lowest (bonding and antibonding) subbands. The electron properties can be further influenced by applying front- or back-gate voltage.Comment: 4 pages, 5 figures, elsart/PHYEAUTH macros; to be presented on the EP2DS-15 Conference in Nara, Japan. Revised version. To appear in Physica

    Fast optical control of spin in semiconductor interfacial structures

    Full text link
    We report on a picosecond-fast optical removal of spin polarization from a self-confined photo-carrier system at an undoped GaAs/AlGaAs interface possessing superior long-range and high-speed spin transport properties. We employed a modified resonant spin amplification technique with unequal intensities of subsequent pump pulses to experimentally distinguish the evolution of spin populations originating from different excitation laser pulses. We demonstrate that the density of spins, which is injected into the system by means of the optical orientation, can be controlled by reducing the electrostatic confinement of the system using an additional generation of photocarriers. It is also shown that the disturbed confinement recovers within hundreds of picoseconds after which spins can be again photo-injected into the system
    corecore