8,775 research outputs found

    Nonparallel support vector machines for pattern classification

    Get PDF
    We propose a novel nonparallel classifier, called nonparallel support vector machine (NPSVM), for binary classification. Our NPSVM that is fully different from the existing nonparallel classifiers, such as the generalized eigenvalue proximal support vector machine (GEPSVM) and the twin support vector machine (TWSVM), has several incomparable advantages: 1) two primal problems are constructed implementing the structural risk minimization principle; 2) the dual problems of these two primal problems have the same advantages as that of the standard SVMs, so that the kernel trick can be applied directly, while existing TWSVMs have to construct another two primal problems for nonlinear cases based on the approximate kernel-generated surfaces, furthermore, their nonlinear problems cannot degenerate to the linear case even the linear kernel is used; 3) the dual problems have the same elegant formulation with that of standard SVMs and can certainly be solved efficiently by sequential minimization optimization algorithm, while existing GEPSVM or TWSVMs are not suitable for large scale problems; 4) it has the inherent sparseness as standard SVMs; 5) existing TWSVMs are only the special cases of the NPSVM when the parameters of which are appropriately chosen. Experimental results on lots of datasets show the effectiveness of our method in both sparseness and classification accuracy, and therefore, confirm the above conclusion further. In some sense, our NPSVM is a new starting point of nonparallel classifiers

    Possible approach to improve sensitivity of a Michelson interferometer

    Full text link
    We propose a possible approach to achieve an 1/N sensitivity of Michelson interferometer by using a properly designed random phase modulation. Different from other approaches, the sensitivity improvement does not depend on increasing optical powers or utilizing the quantum properties of light. Moreover the requirements for optical losses and the quantum efficiencies of photodetection systems might be lower than the quantum approaches and the sensitivity improvement is frequency independent in all detection band.Comment: 8 pages, 3 figures, new versio

    Genome-wide Analysis and Expression Profiling Suggest Diverse Roles of TCP Genes During Development and Stress Responses in Grapevine (Vitis vinifera L)

    Get PDF
    Teosinte branched 1/cycloidea/proliferating cell factor 1 (TCP) proteins are plant-specific transcription factors playing crucial roles in various biological processes, such as leaf development, flower symmetry, shoot branching and senescence. However, no comprehensive analysis of the TCP gene family has been reported in grapevine (Vitis vinifera L). Herein, a total of 15 TCP family members were identified in the genome of grapevine, located on eight of the 19 chromosomes. Phylogenetic and structural analyses showed that the VvTCPs were classified into two groups, designated as Class I and Class II. The Class II genes were further divided into two subclasses, the CIN subclass and the CYC/TB1 subclass. Genes belonging to the same subclass shared similar gene structures, conserved domains and motifs. Real-time PCR showed that almost all members of Class II exhibited organ-specific expression patterns, while members of Class I and the CIN Class were ubiquitously expressed in all the tissues examined, indicating multiple roles in the development of different grapevine organs. In addition, many members were strongly modulated by abiotic (cold, heat, drought) and biotic (downy mildew and powdery mildew infection) stresses, suggesting important and diverse regulatory roles in adverse conditions and plant immunity. The comprehensive in silico analysis of the grapevine TCP transcription factor family gives us some references to potential functions in grapevine development and stress responses

    An introduction to fractal-based approaches in unconventional reservoirs — Part II

    Get PDF
    In recent years, unconventional reservoirs have drawn tremendous attention worldwide. This special issue collects a series of recent works on various fractal-based approaches in unconventional reservoirs. The topics covered in this introduction include fractal characterization of pore (throat) structure and its influences on the physical properties of unconventional rocks, fractal characteristics of crack propagation in coal and fluid flow in rock fracture network under shearing, porous flow phenomena and gas adsorption mechanism, fractal geophysical method in reservoirs

    On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer

    Get PDF
    Cataloged from PDF version of article.A redshift of the peak emission wavelength was observed in the blue light emitting diodes of InGaN/GaN grown with a higher temperature interlayer that was sandwiched between the low-temperature buffer layer and high-temperature unintentionally doped GaN layer. The effect of interlayer growth temperature on the emission wavelength was probed and studied by optical, structural, and electrical properties. Numerical studies on the effect of indium composition and quantum confinement Stark effect were also carried out to verify the experimental data. The results suggest that the redshift of the peak emission wavelength is originated from the enhanced indium incorporation, which results from the reduced strain during the growth of quantum wells. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3694054

    A PN-type quantum barrier for InGaN/GaN light emitting diodes

    Get PDF
    Cataloged from PDF version of article.In this work, InGaN/GaN light-emitting diodes (LEDs) with PN-type quantum barriers are comparatively studied both theoretically and experimentally. A strong enhancement in the optical output power is obtained from the proposed device. The improved performance is attributed to the screening of the quantum confined Stark effect (QCSE) in the quantum wells and improved hole transport across the active region. In addition, the enhanced overall radiative recombination rates in the multiple quantum wells and increased effective energy barrier height in the conduction band has substantially suppressed the electron leakage from the active region. Furthermore, the electrical conductivity in the proposed devices is improved. The numerical and experimental results are in excellent agreement and indicate that the PN-type quantum barriers hold great promise for high-performance InGaN/GaN LEDs. (C) 2013 Optical Society of Americ

    Sensitivity of estimated total canopy SIF emission to remotely sensed LAI and BRDF products

    Get PDF
    Remote sensing of solar-induced chlorophyll fluorescence (SIF) provides new possibilities to estimate terrestrial gross primary production (GPP). To mitigate the angular and canopy structural effects on original SIF observed by sensors (SIFobs), it is recommended to derive total canopy SIF emission (SIFtotal) of leaves within a canopy using canopy interception (i0) and reflectance of vegetation (RV). However, the effects of the uncertainties in i0 and RV on the estimation of SIFtotal have not been well understood. Here, we evaluated such effects on the estimation of GPP using the Soil-Canopy-Observation of Photosynthesis and the Energy balance (SCOPE) model. The SCOPE simulations showed that the R2 between GPP and SIFtotal was clearly higher than that between GPP and SIFobs and the differences in R2 (ΔR2) tend to decrease with the increasing levels of uncertainties in i0 and RV. The resultant ΔR2 decreased to zero when the uncertainty level in i0 and RV was ~30% for red band SIF (RSIF, 683 nm) and ~20% for far-red band SIF (FRSIF, 740 nm). In addition, as compared to the TROPOspheric Monitoring Instrument (TROPOMI) SIFobs at both red and far-red bands, SIFtotal derived using any combination of i0 (from MCD15, VNP15, and CGLS LAI products) and RV (from MCD34, MCD19, and VNP43 BRDF products) showed comparable improvements in estimating GPP. With this study, we suggest a way to advance our understanding in the estimation of a more physiological relevant SIF datasets (SIFtotal) using current satellite products

    Effective-mass Klein-Gordon Equation for non-PT/non-Hermitian Generalized Morse Potential

    Full text link
    The one-dimensional effective-mass Klein-Gordon equation for the real, and non-\textrm{PT}-symmetric/non-Hermitian generalized Morse potential is solved by taking a series expansion for the wave function. The energy eigenvalues, and the corresponding eigenfunctions are obtained. They are also calculated for the constant mass case.Comment: 14 page

    InGaN/GaN light-emitting diode with a polarization tunnel junction

    Get PDF
    Cataloged from PDF version of article.We report InGaN/GaN light-emitting diodes (LED) comprising in situ integrated p(+)-GaN/InGaN/n(+)-GaN polarization tunnel junctions. Improved current spreading and carrier tunneling probability were obtained in the proposed device architecture, leading to the enhanced optical output power and external quantum efficiency. Compared to the reference InGaN/GaN LEDs using the conventional p(+)/n(+) tunnel junction, these devices having the polarization tunnel junction show a reduced forward bias, which is attributed to the polarization induced electric fields resulting from the in-plane biaxial compressive strain in the thin InGaN layer sandwiched between the p(+)-GaN and n(+)-GaN layers. (C) 2013 AIP Publishing LLC
    • …
    corecore