20 research outputs found

    The building blocks of the Milky Way halo using APOGEE and Gaia -- or -- Is the Galaxy a typical galaxy?

    Get PDF
    We summarise recent results from analysis of APOGEE/Gaia data for stellar populations in the Galactic halo, disk, and bulge, leading to constraints on the contribution of dwarf galaxies and globular clusters to the stellar content of the Milky Way halo. Interpretation of the extant data in light of cosmological numerical simulations suggests that the Milky Way has been subject to an unusually intense accretion history at z >~ 1.5

    The age-metallicity structure of the Milky Way disc using APOGEE

    Get PDF
    The measurement of the structure of stellar populations in the Milky Way disc places fundamental constraints on models of galaxy formation and evolution. Previously, the disc’s structure has been studied in terms of populations defined geometrically and/or chemically, but a decomposition based on stellar ages provides a more direct connection to the history of the disc, and stronger constraint on theory. Here, we use positions, abundances and ages for 31 244 red giant branch stars from the Sloan Digital Sky Survey (SDSS)-APOGEE survey, spanning 3 < Rgc < 15 kpc, to dissect the disc into mono-age and mono-[Fe/H] populations at low and high [α/Fe]. For each population, with age < 2 Gyr and [Fe/H] < 0.1 dex, we measure the structure and surface-mass density contribution. We find that low [α/Fe] mono-age populations are fit well by a broken exponential, which increases to a peak radius and decreases thereafter. We show that this profile becomes broader with age, interpreted here as a new signal of disc heating and radial migration. High [α/Fe] populations are well fit as single exponentials within the radial range considered, with an average scalelength of 1.9 ± 0.1 kpc. We find that the relative contribution of high to low [α/Fe] populations at R0 is fïżœ = 18 per cent ± 5 per cent; high [α/Fe] contributes most of the mass at old ages, and low [α/Fe] at young ages. The low and high [α/Fe] populations overlap in age at intermediate [Fe/H], although both contribute mass at R0 across the full range of [Fe/H]. The mass-weighted scaleheight hZ distribution is a smoothly declining exponential function. High [α/Fe] populations are thicker than low [α/Fe], and the average hZ increases steadily with age, between 200 and 600 pc

    Age dissection of the Milky Way discs: Red giants in the Kepler field

    Get PDF
    Ensemble studies of red-giant stars with exquisite asteroseismic (Kepler), spectroscopic (APOGEE), and astrometric (Gaia) constraints offer a novel opportunity to recast and address long-standing questions concerning the evolution of stars and of the Galaxy. Here, we infer masses and ages for nearly 5400 giants with available Kepler light curves and APOGEE spectra using the code PARAM, and discuss some of the systematics that may affect the accuracy of the inferred stellar properties. We then present patterns in mass, evolutionary state, age, chemical abundance, and orbital parameters that we deem robust against the systematic uncertainties explored. First, we look at age-chemical-abundances ([Fe/H] and [α/Fe]) relations. We find a dearth of young, metal-rich ([Fe/H] > 0.2) stars, and the existence of a significant population of old (8−9 Gyr), low-[α/Fe], super-solar metallicity stars, reminiscent of the age and metallicity of the well-studied open cluster NGC 6791. The age-chemo-kinematic properties of these stars indicate that efficient radial migration happens in the thin disc. We find that ages and masses of the nearly 400 α-element-rich red-giant-branch (RGB) stars in our sample are compatible with those of an old (∌11 Gyr), nearly coeval, chemical-thick disc population. Using a statistical model, we show that the width of the observed age distribution is dominated by the random uncertainties on age, and that the spread of the inferred intrinsic age distribution is such that 95% of the population was born within ∌1.5 Gyr. Moreover, we find a difference in the vertical velocity dispersion between low- and high-[α/Fe] populations. This discontinuity, together with the chemical one in the [α/Fe] versus [Fe/H] diagram, and with the inferred age distributions, not only confirms the different chemo-dynamical histories of the chemical-thick and thin discs, but it is also suggestive of a halt in the star formation (quenching) after the formation of the chemical-thick disc. We then exploit the almost coeval α-rich population to gain insight into processes that may have altered the mass of a star along its evolution, which are key to improving the mapping of the current, observed, stellar mass to the initial mass and thus to the age. Comparing the mass distribution of stars on the lower RGB (R <  11 R⊙) with those in the red clump (RC), we find evidence for a mean integrated RGB mass loss ⟹ΔM⟩ = 0.10 ± 0.02 M⊙. Finally, we find that the occurrence of massive (M ≳ 1.1 M⊙) α-rich stars is of the order of 5% on the RGB, and significantly higher in the RC, supporting the scenario in which most of these stars had undergone an interaction with a companion

    An enquiry on the origins of N-rich stars in the inner Galaxy based on APOGEE chemical compositions

    Get PDF
    Recent evidence based on APOGEE data for stars within a few kpc of the Galactic Centre suggests that dissolved globular clusters (GCs) contribute significantly to the stellar mass budget of the inner halo. In this paper, we enquire into the origins of tracers of GC dissolution, N-rich stars, that are located in the inner 4 kpc of the Milky Way. From an analysis of the chemical compositions of these stars, we establish that about 30 per cent of the N-rich stars previously identified in the inner Galaxy may have an accreted origin. This result is confirmed by an analysis of the kinematic properties of our sample. The specific frequency of N-rich stars is quite large in the accreted population, exceeding that of its in situ counterparts by near an order of magnitude, in disagreement with predictions from numerical simulations. We hope that our numbers provide a useful test to models of GC formation and destruction

    Dynamical heating across the Milky Way disc using APOGEE and Gaia

    Get PDF
    The kinematics of the Milky Way disc as a function of age are well measured at the solar radius, but have not been studied over a wider range of Galactocentric radii. Here, we measure the kinematics of mono-age, mono-[Fe/H] populations in the low and high [α/Fe] discs between 4 â‰Č R â‰Č 13 kpc and |z| â‰Č 2 kpc using 65 719 stars in common between APOGEE DR14 and Gaia DR2 for which we estimate ages using a Bayesian neural network model trained on asteroseismic ages. We determine the vertical and radial velocity dispersions, finding that the low and high [α/Fe] discs display markedly different age–velocity dispersion relations (AVRs) and shapes σz/σR. The high [α/Fe] disc has roughly flat AVRs and constant σz/σR = 0.64 ± 0.04, whereas the low [α/Fe] disc has large variations in this ratio that positively correlate with the mean orbital radius of the population at fixed age. The high [α/Fe] disc component’s flat AVRs and constant σz/σR clearly indicate an entirely different heating history. Outer disc populations also have flatter radial AVRs than those in the inner disc, likely due to the waning effect of spiral arms. Our detailed measurements of AVRs and σz/σR across the disc indicate that low [α/Fe], inner disc (⁠Râ‰Č10kpc⁠) stellar populations are likely dynamically heated by both giant molecular clouds and spiral arms, while the observed trends for outer disc populations require a significant contribution from another heating mechanism such as satellite perturbations. We also find that outer disc populations have slightly positive mean vertical and radial velocities likely because they are part of the warped disc

    Evidence from APOGEE for the presence of a major building block of the halo buried in the inner Galaxy

    Get PDF
    We report evidence from APOGEE for the presence of a new metal-poor stellar structure located within ∌4 kpc of the Galactic Centre. Characterized by a chemical composition resembling those of low-mass satellites of the Milky Way, this new inner Galaxy structure (IGS) seems to be chemically and dynamically detached from more metal-rich populations in the inner Galaxy. We conjecture that this structure is associated with an accretion event that likely occurred in the early life of the Milky Way. Comparing the mean elemental abundances of this structure with predictions from cosmological numerical simulations, we estimate that the progenitor system had a stellar mass of ∌5 × 108 M⊙, or approximately twice the mass of the recently discovered Gaia-Enceladus/Sausage system. We find that the accreted:in situ ratio within our metal-poor ([Fe/H] < –0.8) bulge sample is somewhere between 1:3 and 1:2, confirming predictions of cosmological numerical simulations by various groups

    Chemical tagging with APOGEE: discovery of a large population of N-rich stars in the inner Galaxy

    Get PDF
    Formation of globular clusters (GCs), the Galactic bulge, or galaxy bulges in general is an important unsolved problem in Galactic astronomy. Homogeneous infrared observations of large samples of stars belonging to GCs and the Galactic bulge field are one of the best ways to study these problems. We report the discovery by APOGEE (Apache Point Observatory Galactic Evolution Experiment) of a population of field stars in the inner Galaxy with abundances of N, C, and Al that are typically found in GC stars. The newly discovered stars have high [N/Fe], which is correlated with [Al/Fe] and anticorrelated with [C/Fe]. They are homogeneously distributed across, and kinematically indistinguishable from, other field stars within the same volume. Their metallicity distribution is seemingly unimodal, peaking at [Fe/H] ∌ −1, thus being in disagreement with that of the Galactic GC system. Our results can be understood in terms of different scenarios. N-rich stars could be former members of dissolved GCs, in which case the mass in destroyed GCs exceeds that of the surviving GC system by a factor of ∌8. In that scenario, the total mass contained in so-called ‘first-generation’ stars cannot be larger than that in ‘second-generation’ stars by more than a factor of ∌9 and was certainly smaller. Conversely, our results may imply the absence of a mandatory genetic link between ‘second-generation’ stars and GCs. Last, but not least, N-rich stars could be the oldest stars in the Galaxy, the by-products of chemical enrichment by the first stellar generations formed in the heart of the Galaxy

    APOGEE detection of N-rich stars in the tidal tails of Palomar 5

    Get PDF
    Recent results from chemical tagging studies using APOGEE data suggest a strong link between the chemical abundance patterns of stars found within globular clusters, and chemically peculiar populations in the Galactic halo field. In this paper we analyse the chemical compositions of stars within the cluster body and tidal streams of Palomar 5, a globular cluster that is being tidally disrupted by interaction with the Galactic gravitational potential. We report the identification of nitrogen-rich (N-rich) stars both within and beyond the tidal radius of Palomar 5, with the latter being clearly aligned with the cluster tidal streams; this acts as confirmation that N-rich stars are lost to the Galactic halo from globular clusters, and provides support to the hypothesis that field N-rich stars identified by various groups have a globular cluster origin

    The chemical characterisation of halo substructure in the Milky Way based on APOGEE

    Get PDF
    Galactic haloes in a Λ-CDM universe are predicted to host today a swarm of debris resulting from cannibalised dwarf galaxies. The chemo-dynamical information recorded in their stellar populations helps elucidate their nature, constraining the assembly history of the Galaxy. Using data from APOGEE and Gaia, we examine the chemical properties of various halo substructures, considering elements that sample various nucleosynthetic pathways. The systems studied are Heracles, Gaia-Enceladus/Sausage (GES), the Helmi stream, Sequoia, Thamnos, Aleph, LMS-1, Arjuna, I’itoi, Nyx, Icarus, and Pontus. Abundance patterns of all substructures are cross-compared in a statistically robust fashion. Our main findings include: (i) the chemical properties of most substructures studied match qualitatively those of dwarf Milky Way satellites, such as the Sagittarius dSph. Exceptions are Nyx and Aleph, which are chemically similar to disc stars, implying that these substructures were likely formed in situ; (ii) Heracles differs chemically from in situ populations such as Aurora and its inner halo counterparts in a statistically significant way. The differences suggest that the star formation rate was lower in Heracles than in the early Milky Way; (iii) the chemistry of Arjuna, LMS-1, and I’itoi is indistinguishable from that of GES, suggesting a possible common origin; (iv) all three Sequoia samples studied are qualitatively similar. However, only two of those samples present chemistry that is consistent with GES in a statistically significant fashion; (v) the abundance patterns of the Helmi stream and Thamnos are different from all other halo substructures

    Chemical Cartography with APOGEE: Mapping Disk Populations with a 2-process Model and Residual Abundances

    Get PDF
    We apply a novel statistical analysis to measurements of 16 elemental abundances in 34,410 Milky Way disk stars from the final data release (DR17) of APOGEE-2. Building on recent work, we fit median abundance ratio trends [X/Mg] versus [Mg/H] with a 2-process model, which decomposes abundance patterns into a "prompt"component tracing core-collapse supernovae and a "delayed"component tracing Type Ia supernovae. For each sample star, we fit the amplitudes of these two components, then compute the residuals ÎŽ[X/H] from this two-parameter fit. The rms residuals range from ∌0.01-0.03 dex for the most precisely measured APOGEE abundances to ∌0.1 dex for Na, V, and Ce. The correlations of residuals reveal a complex underlying structure, including a correlated element group comprised of Ca, Na, Al, K, Cr, and Ce and a separate group comprised of Ni, V, Mn, and Co. Selecting stars poorly fit by the 2-process model reveals a rich variety of physical outliers and sometimes subtle measurement errors. Residual abundances allow for the comparison of populations controlled for differences in metallicity and [α/Fe]. Relative to the main disk (R = 3-13 kpc), we find nearly identical abundance patterns in the outer disk (R = 15-17 kpc), 0.05-0.2 dex depressions of multiple elements in LMC and Gaia Sausage/Enceladus stars, and wild deviations (0.4-1 dex) of multiple elements in ω Cen. The residual abundance analysis opens new opportunities for discovering chemically distinctive stars and stellar populations, for empirically constraining nucleosynthetic yields, and for testing chemical evolution models that include stochasticity in the production and redistribution of elements
    corecore