32 research outputs found

    Planetary population synthesis

    Full text link
    In stellar astrophysics, the technique of population synthesis has been successfully used for several decades. For planets, it is in contrast still a young method which only became important in recent years because of the rapid increase of the number of known extrasolar planets, and the associated growth of statistical observational constraints. With planetary population synthesis, the theory of planet formation and evolution can be put to the test against these constraints. In this review of planetary population synthesis, we first briefly list key observational constraints. Then, the work flow in the method and its two main components are presented, namely global end-to-end models that predict planetary system properties directly from protoplanetary disk properties and probability distributions for these initial conditions. An overview of various population synthesis models in the literature is given. The sub-models for the physical processes considered in global models are described: the evolution of the protoplanetary disk, the planets' accretion of solids and gas, orbital migration, and N-body interactions among concurrently growing protoplanets. Next, typical population synthesis results are illustrated in the form of new syntheses obtained with the latest generation of the Bern model. Planetary formation tracks, the distribution of planets in the mass-distance and radius-distance plane, the planetary mass function, and the distributions of planetary radii, semimajor axes, and luminosities are shown, linked to underlying physical processes, and compared with their observational counterparts. We finish by highlighting the most important predictions made by population synthesis models and discuss the lessons learned from these predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the 'Handbook of Exoplanets', planet formation section, section editor: Ralph Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed

    Incubating Isolated Mouse EDL Muscles with Creatine Improves Force Production and Twitch Kinetics in Fatigue Due to Reduction in Ionic Strength

    Get PDF
    Creatine supplementation can improve performance during high intensity exercise in humans and improve muscle strength in certain myopathies. In this present study, we investigated the direct effects of acute creatine incubation on isolated mouse fast-twitch EDL muscles, and examined how these effects change with fatigue. muscle from mice aged 12–14 weeks was isolated and stimulated with field electrodes to measure force characteristics in 3 different states: (i) before fatigue; (ii) immediately after a fatigue protocol; and (iii) after recovery. These served as the control measurements for the muscle. The muscle was then incubated in a creatine solution and washed. The measurement of force characteristics in the 3 different states was then repeated. In un-fatigued muscle, creatine incubation increased the maximal tetanic force. In fatigued muscle, creatine treatment increased the force produced at all frequencies of stimulation. Incubation also increased the rate of twitch relaxation and twitch contraction in fatigued muscle. During repetitive fatiguing stimulation, creatine-treated muscles took 55.1±9.5% longer than control muscles to lose half of their original force. Measurement of weight changes showed that creatine incubation increased EDL muscle mass by 7%. sensitivity of contractile proteins as a result of ionic strength decreases following creatine incubation

    Populations of planets in multiple star systems

    Full text link
    Astronomers have discovered that both planets and binaries are abundant throughout the Galaxy. In combination, we know of over 100 planets in binary and higher-order multi-star systems, in both circumbinary and circumstellar configurations. In this chapter we review these findings and some of their implications for the formation of both stars and planets. Most of the planets found have been circumstellar, where there is seemingly a ruinous influence of the second star if sufficiently close (<50 AU). Hosts of hot Jupiters have been a particularly popular target for binary star studies, showing an enhanced rate of stellar multiplicity for moderately wide binaries (>100 AU). This was thought to be a sign of Kozai-Lidov migration, however recent studies have shown this mechanism to be too inefficient to account for the majority of hot Jupiters. A couple of dozen circumbinary planets have been proposed around both main sequence and evolved binaries. Around main sequence binaries there are preliminary indications that the frequency of gas giants is as high as those around single stars. There is however a conspicuous absence of circumbinary planets around the tightest main sequence binaries with periods of just a few days, suggesting a unique, more disruptive formation history of such close stellar pairs.Comment: Invited review chapter, accepted for publication in "Handbook of Exoplanets", ed. H. Deeg & J. A. Belmont

    Migration-Induced Architectures of Planetary Systems

    Full text link

    Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity

    Full text link

    Substrate preferences of coexisting invasive amphipods, Dikerogammarus villosus and Dikerogammarus haemobaphes, under field and laboratory conditions

    No full text
    This is an Open Access Article. It is published by Springer under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/Two Ponto-Caspian amphipods, Dikerogammarus villosus and Dikerogammarus haemobaphes, have expanded their geographical ranges from eastern Europe into Great Britain in recent years. This study represents one of the first examining the distribution and habitat preferences of coexisting populations of D. haemobaphes and D. villosus via field and laboratory experiments in the UK. Field surveys of a recently invaded lowland reservoir in the UK are complimented with ex situ laboratory mesocosm experiments examining the substrate preferences of coexisting populations of D. villosus and D. haemobaphes. Results from the field study indicated that D. haemobaphes dominated the macroinvertebrate community within the reservoir and demonstrated a strong affinity for large cobble and artificial substrates. D. villosus occurred at lower abundances but displayed a strong preference for coarse cobble substrates. A third invasive amphipod, Crangonyx pseudogracilis, was largely confined to sand/silt habitats. Laboratory mesocosm experiments clearly supported the field observations of D. villosus and D. haemobaphes with both species demonstrating a preference for cobble substrates. Results from the study highlight the importance of characterising physical habitat when investigating biological invasions and suggest that habitat availability may influence the extent and speed at which range expansion of new amphipod invaders occurs

    A candidate super-Earth planet orbiting near the snow line of Barnard’s star

    Get PDF
    Barnard’s star is a red dwarf, and has the largest proper motion (apparent motion across the sky) of all known stars. At a distance of 1.8 parsecs1, it is the closest single star to the Sun; only the three stars in the α Centauri system are closer. Barnard’s star is also among the least magnetically active red dwarfs known2,3 and has an estimated age older than the Solar System. Its properties make it a prime target for planetary searches; various techniques with different sensitivity limits have been used previously, including radial-velocity imaging4,5,6, astrometry7,8 and direct imaging9, but all ultimately led to negative or null results. Here we combine numerous measurements from high-precision radial-velocity instruments, revealing the presence of a low-amplitude periodic signal with a period of 233 days. Independent photometric and spectroscopic monitoring, as well as an analysis of instrumental systematic effects, suggest that this signal is best explained as arising from a planetary companion. The candidate planet around Barnard’s star is a cold super-Earth, with a minimum mass of 3.2 times that of Earth, orbiting near its snow line (the minimum distance from the star at which volatile compounds could condense). The combination of all radial-velocity datasets spanning 20 years of measurements additionally reveals a long-term modulation that could arise from a stellar magnetic-activity cycle or from a more distant planetary object. Because of its proximity to the Sun, the candidate planet has a maximum angular separation of 220 milliarcseconds from Barnard’s star, making it an excellent target for direct imaging and astrometric observations in the future

    Accretion Disks and Eruptive Phenomena

    No full text
    corecore