9 research outputs found

    Maximizing oyster-reef growth supports green infrastructure with accelerating sea-level rise

    Get PDF
    Within intertidal communities, aerial exposure (emergence during the tidal cycle) generates strong vertical zonation patterns with distinct growth boundaries regulated by physiological and external stressors. Forecasted accelerations in sea-level rise (SLR) will shift the position of these critical boundaries in ways we cannot yet fully predict, but landward migration will be impaired by coastal development, amplifying the importance of foundation species’ ability to maintain their position relative to rising sea levels via vertical growth. Here we show the effects of emergence on vertical oyster-reef growth by determining the conditions at which intertidal reefs thrive and the sharp boundaries where reefs fail, which shift with changes in sea level. We found that oyster reef growth is unimodal relative to emergence, with greatest growth rates occurring between 20–40% exposure, and zero-growth boundaries at 10% and 55% exposures. Notably, along the lower growth boundary (10%), increased rates of SLR would outpace reef accretion, thereby reducing the depth range of substrate suitable for reef maintenance and formation, and exacerbating habitat loss along developed shorelines. Our results identify where, within intertidal areas, constructed or natural oyster reefs will persist and function best as green infrastructure to enhance coastal resiliency under conditions of accelerating SLR

    Attraction and repulsion of mobile wild organisms to finfish and shellfish aquaculture: a review

    Get PDF
    Knowledge of aquaculture–environment interactions is essential for the development of a sustainable aquaculture industry and efficient marine spatial planning. The effects of fish and shellfish farming on sessile wild populations, particularly infauna, have been studied intensively. Mobile fauna, including crustaceans, fish, birds and marine mammals, also interact with aquaculture operations, but the interactions are more complex and these animals may be attracted to (attraction) or show an aversion to (repulsion) farm operations with various degrees of effects. This review outlines the main mechanisms and effects of attraction and repulsion of wild animals to/from marine finfish cage and bivalve aquaculture, with a focus on effects on fisheries-related species. Effects considered in this review include those related to the provision of physical structure (farm infrastructure acting as fish aggregating devices (FADs) or artificial reefs (ARs), the provision of food (e.g. farmed animals, waste feed and faeces, fouling organisms associated with farm structures) and some farm activities (e.g. boating, cleaning). The reviews show that the distribution of mobile organisms associated with farming structures varies over various spatial (vertical and horizontal) and temporal scales (season, feeding time, day/night period). Attraction/repulsion mechanisms have a variety of direct and indirect effects on wild organisms at the level of individuals and populations and may have implication for the management of fisheries species and the ecosystem in the context of marine spatial planning. This review revealed considerable uncertainties regarding the long-term and ecosystem-wide consequences of these interactions. The use of modelling may help better understand consequences, but long-term studies are necessary to better elucidate effects

    Fishing activities

    No full text
    Unlike the major anthropogenic changes that terrestrial and coastal habitats underwent during the last centuries such as deforestation, river engineering, agricultural practices or urbanism, those occurring underwater are veiled from our eyes and have continued nearly unnoticed. Only recent advances in remote sensing and deep marine sampling technologies have revealed the extent and magnitude of the anthropogenic impacts to the seafloor. In particular, bottom trawling, a fishing technique consisting of dragging a net and fishing gear over the seafloor to capture bottom-dwelling living resources has gained attention among the scientific community, policy makers and the general public due to its destructive effects on the seabed. Trawling gear produces acute impacts on biota and the physical substratum of the seafloor by disrupting the sediment column structure, overturning boulders, resuspending sediments and imprinting deep scars on muddy bottoms. Also, the repetitive passage of trawling gear over the same areas creates long-lasting, cumulative impacts that modify the cohesiveness and texture of sediments. It can be asserted nowadays that due to its recurrence, mobility and wide geographical extent, industrial trawling has become a major force driving seafloor change and affecting not only its physical integrity on short spatial scales but also imprinting measurable modifications to the geomorphology of entire continental margins.Fil: Oberle, F.K.J.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias del Mar; EspañaFil: Puig, P.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias del Mar; EspañaFil: Martín de Nascimento, Jacobo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentin
    corecore