89 research outputs found

    Chern-Simons black holes: scalar perturbations, mass and area spectrum and greybody factors

    Full text link
    We study the Chern-Simons black holes in d-dimensions and we calculate analytically the quasi-normal modes of the scalar perturbations and we show that they depend on the highest power of curvature present in the Chern-Simons theory. We obtain the mass and area spectrum of these black holes and we show that they have a strong dependence on the topology of the transverse space and they are not evenly spaced. We also calculate analytically the reflection and transmission coefficients and the absorption cross section and we show that at low frequency limit there is a range of modes which contributes to the absorption cross section.Comment: 19 pages, 18 figures, the title has been changed to reflect the addition of an another section on the reflection, transmission coefficients and absorption cross sections of the Chern-Simons black holes. Version to be published in JHE

    Equal antipyretic effectiveness of oral and rectal acetaminophen: a randomized controlled trial [ISRCTN11886401]

    Get PDF
    BACKGROUND: The antipyretic effectiveness of rectal versus oral acetaminophen is not well established. This study is designed to compare the antipyretic effectiveness of two rectal acetaminophen doses (15 mg/kg) and (35 mg/kg), to the standard oral dose of 15 mg/kg. METHODS: This is a randomized, double-dummy, double-blind study of 51 febrile children, receiving one of three regimens of a single acetaminophen dose: 15 mg/kg orally, 15 mg/kg rectally, or 35 mg/kg rectally. Rectal temperature was monitored at baseline and hourly for a total of six hours. The primary outcome of the study, time to maximum antipyresis, and the secondary outcome of time to temperature reduction by at least 1°C were analyzed by one-way ANOVA. Two-way ANOVA with repeated measures over time was used to compare the secondary outcome: change in temperature from baseline at times1, 2, 3, 4, 5, and 6 hours among the three groups. Intent-to-treat analysis was planned. RESULTS: No significant differences were found among the three groups in the time to maximum antipyresis (overall mean = 3.6 hours; 95% CI: 3.2–4.0), time to fever reduction by 1°C or the mean hourly temperature from baseline to 6 hours following dose administration. Hypothermia (temperature < 36.5°C) occurred in 11(21.6%) subjects, with the highest proportion being in the rectal high-dose group. CONCLUSION: Standard (15 mg/kg) oral, (15 mg/kg) rectal, and high-dose (35 mg/kg) rectal acetaminophen have similar antipyretic effectiveness

    Differential postural effects of plantar-flexor muscles fatigue under normal, altered and improved vestibular and neck somatosensory conditions

    Full text link
    The aim of the present study was to assess the effects of plantar-flexor muscles fatigue on postural control during quiet standing under normal, altered and improved vestibular and neck somatosensory conditions. To address this objective, young male university students were asked to stand upright as still as possible with their eyes closed in two conditions of No Fatigue and Fatigue of the plantar-flexor muscles. In Experiment 1 (n=15), the postural task was executed in two Neutral head and Head tilted backward postures, recognized to degrade vestibular and neck somatosensory information. In Experiment 2 (n=15), the postural task was executed in two conditions of No tactile and Tactile stimulation of the neck provided by the application of strips of adhesive bandage to the skin over and around the neck. Centre of foot pressure displacements were recorded using a force platform. Results showed that (1) the Fatigue condition yielded increased CoP displacements relative to the No Fatigue condition (Experiment 1 and Experiment 2), (2) this destabilizing effect was more accentuated in the Head tilted backward posture than Neutral head posture (Experiment 1) and (3) this destabilizing effect was less accentuated in the condition of Tactile stimulation than that of No tactile stimulation of the neck (Experiment 2). In the context of the multisensory control of balance, these results suggest an increased reliance on vestibular and neck somatosensory information for controlling posture during quiet standing in condition of altered ankle neuromuscular function

    Toxicity in mice expressing short hairpin RNAs gives new insight into RNAi

    Get PDF
    Short hairpin RNAs can provide stable gene silencing via RNA interference. Recent studies have shown toxicity in vivo that appears to be related to saturation of the endogenous microRNA pathway. Will these findings limit the therapeutic use of such hairpins

    Siah1 proteins enhance radiosensitivity of human breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Siah proteins play an important role in cancer progression. We evaluated the effect of Siah1, its splice variants Siah1L and the Siah1 mutant with the RING finger deleted (Siah1ΔR) on radiosensitization of human breast cancer cells.</p> <p>Methods</p> <p>The status of Siah1 and Siah1L was analysed in five breast cancer cell lines. To establish stable cells, SKBR3 cells were transfected with Siah1, Siah-1L and Siah1ΔR. Siah1 function was suppressed by siRNA in MCF-7 cells. The impact of Siah1 overexpression and silencing on apoptosis, proliferation, survival, invasion ability and DNA repair was assessed in SKBR3 and MCF-7 cells, also in regards to radiation.</p> <p>Results</p> <p>Siah1 and Siah1L mRNA expression was absent in four of five breast cancer cells lines analysed. Overexpression of Siah1 and Siah1L enhanced radiation-induced apoptosis in stable transfected SKBR3 cells, while Siah1ΔR failed to show this effect. In addition, Siah1 and Siah1L significantly reduced cell clonogenic survival and proliferation. Siah1L sensitization enhancement ratio values were over 1.5 and 4.0 for clonogenic survival and proliferation, respectively, pointing to a highly cooperative and potentially synergistic fashion with radiation. Siah1 or Siah1L significantly reduced invasion ability of SKBR3 and suppressed Tcf/Lef factor activity. Importantly, Siah1 siRNA demonstrated opposite effects in MCF-7 cells. Siah1 and Siah1L overexpression resulted in inhibition of DNA repair as inferred by increased levels of DNA double-strand breaks in irradiated SKBR3 cells.</p> <p>Conclusion</p> <p>Our results reveal for the first time how overexpression of Siah1L and Siah1 can determine radiosensitivity of breast cancer cells. These findings suggest that development of drugs augmenting Siah1 and Siah1L activity could be a novel approach in improving tumor cell kill.</p

    TDP-43 Identified from a Genome Wide RNAi Screen for SOD1 Regulators

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) is a late-onset, progressive neurodegenerative disease affecting motor neurons in the brain stem and spinal cord leading to loss of voluntary muscular function and ultimately, death due to respiratory failure. A subset of ALS cases are familial and associated with mutations in superoxide dismutase 1 (SOD1) that destabilize the protein and predispose it to aggregation. In spite of the fact that sporadic and familial forms of ALS share many common patho-physiological features, the mechanistic relationship between SOD1-associated and sporadic forms of the disease if any, is not well understood. To better understand any molecular connections, a cell-based protein folding assay was employed to screen a whole genome RNAi library for genes that regulate levels of soluble SOD1. Statistically significant hits that modulate SOD1 levels, when analyzed by pathway analysis revealed a highly ranked network containing TAR DNA binging protein (TDP-43), a major component of aggregates characteristic of sporadic ALS. Biochemical experiments confirmed the action of TDP-43 on SOD1. These results highlight an unexpected relationship between TDP-43 and SOD1 which may have implications in disease pathogenesis

    Visual attention and action: How cueing, direct mapping, and social interactions drive orienting

    Get PDF
    Despite considerable interest in both action perception and social attention over the last 2 decades, there has been surprisingly little investigation concerning how the manual actions of other humans orient visual attention. The present review draws together studies that have measured the orienting of attention, following observation of another’s goal-directed action. Our review proposes that, in line with the literature on eye gaze, action is a particularly strong orienting cue for the visual system. However, we additionally suggest that action may orient visual attention using mechanisms, which gaze direction does not (i.e., neural direct mapping and corepresentation). Finally, we review the implications of these gaze-independent mechanisms for the study of attention to action. We suggest that our understanding of attention to action may benefit from being studied in the context of joint action paradigms, where the role of higher level action goals and social factors can be investigated

    Biomechanical considerations in the pathogenesis of osteoarthritis of the knee

    Get PDF
    Osteoarthritis is the most common joint disease and a major cause of disability. The knee is the large joint most affected. While chronological age is the single most important risk factor of osteoarthritis, the pathogenesis of knee osteoarthritis in the young patient is predominantly related to an unfavorable biomechanical environment at the joint. This results in mechanical demand that exceeds the ability of a joint to repair and maintain itself, predisposing the articular cartilage to premature degeneration. This review examines the available basic science, preclinical and clinical evidence regarding several such unfavorable biomechanical conditions about the knee: malalignment, loss of meniscal tissue, cartilage defects and joint instability or laxity

    Data-analysis strategies for image-based cell profiling

    Get PDF
    Image-based cell profiling is a high-throughput strategy for the quantification of phenotypic differences among a variety of cell populations. It paves the way to studying biological systems on a large scale by using chemical and genetic perturbations. The general workflow for this technology involves image acquisition with high-throughput microscopy systems and subsequent image processing and analysis. Here, we introduce the steps required to create high-quality image-based (i.e., morphological) profiles from a collection of microscopy images. We recommend techniques that have proven useful in each stage of the data analysis process, on the basis of the experience of 20 laboratories worldwide that are refining their image-based cell-profiling methodologies in pursuit of biological discovery. The recommended techniques cover alternatives that may suit various biological goals, experimental designs, and laboratories' preferences.Peer reviewe

    Renal involvement in autoimmune connective tissue diseases

    Full text link
    corecore