293 research outputs found

    In-cell NMR reveals potential precursor of toxic species from SOD1 fALS mutants

    Get PDF
    Mutations in the superoxide dismutase 1 (SOD1) gene are related to familial cases of amyotrophic lateral sclerosis (fALS). Here we exploit in-cell NMR to characterize the protein folding and maturation of a series of fALS-linked SOD1 mutants in human cells and to obtain insight into their behaviour in the cellular context, at the molecular level. The effect of various mutations on SOD1 maturation are investigated by changing the availability of metal ions in the cells, and by coexpressing the copper chaperone for SOD1, hCCS. We observe for most of the mutants the occurrence of an unstructured SOD1 species, unable to bind zinc. This species may be a common precursor of potentially toxic oligomeric species, that are associated with fALS. Coexpression of hCCS in the presence of copper restores the correct maturation of the SOD1 mutants and prevents the formation of the unstructured species, confirming that hCCS also acts as a molecular chaperone

    Optimal quantum cloning of orbital angular momentum photon qubits via Hong-Ou-Mandel coalescence

    Full text link
    The orbital angular momentum (OAM) of light, associated with a helical structure of the wavefunction, has a great potential for quantum photonics, as it allows attaching a higher dimensional quantum space to each photon. Hitherto, however, the use of OAM has been hindered by its difficult manipulation. Here, exploiting the recently demonstrated spin-OAM information transfer tools, we report the first observation of the Hong-Ou-Mandel coalescence of two incoming photons having nonzero OAM into the same outgoing mode of a beam-splitter. The coalescence can be switched on and off by varying the input OAM state of the photons. Such effect has been then exploited to carry out the 1 \rightarrow 2 universal optimal quantum cloning of OAM-encoded qubits, using the symmetrization technique already developed for polarization. These results are finally shown to be scalable to quantum spaces of arbitrary dimension, even combining different degrees of freedom of the photons.Comment: 5 pages, 3 figure

    Experimental demonstration of a hyper-entangled ten-qubit Schr\"odinger cat state

    Full text link
    Coherent manipulation of an increasing number of qubits for the generation of entangled states has been an important goal and benchmark in the emerging field of quantum information science. The multiparticle entangled states serve as physical resources for measurement-based quantum computing and high-precision quantum metrology. However, their experimental preparation has proved extremely challenging. To date, entangled states up to six, eight atoms, or six photonic qubits have been demonstrated. Here, by exploiting both the photons' polarization and momentum degrees of freedom, we report the creation of hyper-entangled six-, eight-, and ten-qubit Schr\"odinger cat states. We characterize the cat states by evaluating their fidelities and detecting the presence of genuine multi-partite entanglement. Small modifications of the experimental setup will allow the generation of various graph states up to ten qubits. Our method provides a shortcut to expand the effective Hilbert space, opening up interesting applications such as quantum-enhanced super-resolving phase measurement, graph-state generation for anyonic simulation and topological error correction, and novel tests of nonlocality with hyper-entanglement.Comment: 11 pages, 5 figures, comments welcom

    Observation of eight-photon entanglement

    Full text link
    Using ultra-bright sources of pure-state entangled photons from parametric down conversion, an eight-photon interferometer and post-selection detection, we demonstrate the ability to experimentally manipulate eight individual photons and report the creation of an eight-photon Schr\"odinger cat state with an observed fidelity of 0.708±0.0160.708 \pm 0.016.Comment: 6 pages, 4 figure

    Beating the channel capacity limit for linear photonic superdense coding

    Full text link
    Dense coding is arguably the protocol that launched the field of quantum communication. Today, however, more than a decade after its initial experimental realization, the channel capacity remains fundamentally limited as conceived for photons using linear elements. Bob can only send to Alice three of four potential messages owing to the impossibility of carrying out the deterministic discrimination of all four Bell states with linear optics, reducing the attainable channel capacity from 2 to log_2 3 \approx 1.585 bits. However, entanglement in an extra degree of freedom enables the complete and deterministic discrimination of all Bell states. Using pairs of photons simultaneously entangled in spin and orbital angular momentum, we demonstrate the quantum advantage of the ancillary entanglement. In particular, we describe a dense-coding experiment with the largest reported channel capacity and, to our knowledge, the first to break the conventional linear-optics threshold. Our encoding is suited for quantum communication without alignment and satellite communication.Comment: Letter: 6 pages, 4 figures. Supplementary Information: 4 pages, 1 figur

    A Light Stop with Flavor in Natural SUSY

    Full text link
    The discovery of a SM-like Higgs boson near 125 GeV and the flavor texture of the Standard Model motivate the investigation of supersymmetric quiver-like BSM extensions. We study the properties of such a minimal class of models which deals naturally with the SM parameters. Considering experimental bounds as well as constraints from flavor physics and Electro-Weak Precision Data, we find the following. In a self-contained minimal model - including the full dynamics of the Higgs sector - top squarks below a TeV are in tension with b->s{\gamma} constraints. Relaxing the assumption concerning the mass generation of the heavy Higgses, we find that a stop not far from half a TeV is allowed. The models have some unique properties, e.g. an enhancement of the h-> b\bar{b},\tau\bar{{\tau}} decays relative to the h->\gamma{\gamma} one, a gluino about 3 times heavier than the stop, an inverted hierarchy of about 3-20 between the squarks of the first two generations and the stop, relatively light Higgsino neutralino or stau NLSP, as well as heavy Higgses and a W' which may be within reach of the LHC.Comment: LaTeX, 22 pages, 4 figures; V2: references adde

    Gluino Decay as a Probe of High Scale Supersymmetry Breaking

    Full text link
    A supersymmetric standard model with heavier scalar supersymmetric particles has many attractive features. If the scalar mass scale is O(10 - 10^4) TeV, the standard model like Higgs boson with mass around 125 GeV, which is strongly favored by the LHC experiment, can be realized. However, in this scenario the scalar particles are too heavy to be produced at the LHC. In addition, if the scalar mass is much less than O(10^4) TeV, the lifetime of the gluino is too short to be measured. Therefore, it is hard to probe the scalar particles at a collider. However, a detailed study of the gluino decay reveals that two body decay of the gluino carries important information on the scalar scale. In this paper, we propose a test of this scenario by measuring the decay pattern of the gluino at the LHC.Comment: 29 pages, 9 figures; version published in JHE

    Effect of Prenatal Exposure to Airborne Polycyclic Aromatic Hydrocarbons on Neurodevelopment in the First 3 Years of Life among Inner-City Children

    Get PDF
    Our prospective cohort study of nonsmoking African-American and Dominican mothers and children in New York City is evaluating the role of prenatal exposure to urban pollutants, including polycyclic aromatic hydrocarbons (PAHs), environmental tobacco smoke (ETS), and pesticides, in the pathogenesis of neurobehavioral disorders. We used the Bayley Scales of Infant Development to evaluate the effects on child mental and psychomotor development of prenatal exposure to airborne PAHs monitored during pregnancy by personal air sampling. Behavioral development was assessed by the Child Behavior Checklist. We adjusted for potential confounders including sociodemographic factors and prenatal exposure to ETS and chlorpyrifos. Prenatal exposure to PAHs was not associated with psychomotor development index or behavioral problems. However, high prenatal exposure to PAHs (upper quartile) was associated with lower mental development index at age 3 [ÎČ= –5.69; 95% confidence interval (CI), –9.05 to –2.33; p < 0.01]. The odds of cognitive developmental delay were also significantly greater for children with high prenatal exposure (odds ratio = 2.89; 95% CI, 1.33 to 6.25; p = 0.01). General estimated equation analysis showed a significant age × PAH effect on mental development (p = 0.01), confirming the age-specific regression findings. Further adjustment for lead did not alter the relationships. There were no differences in effect sizes by ethnicity. The results require confirmation but suggest that environmental PAHs at levels recently encountered in New York City air may adversely affect children’s cognitive development at 3 years of age, with implications for school performance

    Revealing the footprints of squark gluino production through Higgs search experiments at the Large Hadron Collider at 7 TeV and 14 TeV

    Full text link
    The invariant mass distribution of the di-photons from the decay of the lighter scalar Higgs boson(h) to be carefully measured by dedicated h search experiments at the LHC may be distorted by the di-photons associated with the squark-gluino events with much larger cross sections in Gauge Mediated Supersymmetry Breaking (GMSB) models. This distortion if observed by the experiments at the Large Hadron Collider at 7 TeV or 14 TeV, would disfavour not only the standard model but various two Higgs doublet models with comparable h - masses and couplings but without a sector consisting of new heavy particles decaying into photons. The minimal GMSB (mGMSB) model constrained by the mass bound on h from LEP and that on the lightest neutralino from the Tevatron, produce negligible effects. But in the currently popular general GMSB(GGMSB) models the tail of the above distribution may show statistically significant excess of events even in the early stages of the LHC experiments with integrated luminosity insufficient for the discovery of h. We illustrate the above points by introducing several benchmark points in various GMSB models - minimal as well as non-minimal. The same conclusion follows from a detailed parameter scan in a simplified GGMSB model recently employed by the CMS collaboration to interpret their searches in the di-photon + \etslash channel. Other observables like the effective mass distribution of the di-photon + X events may also reveal the presence of new heavy particles beyond the Higgs sector. The contamination of the h mass peak and simple remedies are also discussed.Comment: 23 pages, 7 figures, title and organization of the paper is changed, detailed parameter scan in a simplified GGMSB model is added, conclusions and old numerical results remain unchange

    Higgs decay with monophoton + MET signature from low scale supersymmetry breaking

    Full text link
    We study the decay of a standard model-like Higgs boson into a gravitino and a neutralino, which subsequently decays promptly into another gravitino and a photon. Such a decay can be important in scenarios where the supersymmetry breaking scale is of the order of a few TeV, and in the region of low transverse momenta of the photon, it may provide the dominant contribution to the final state with a photon and two gravitinos. We estimate the relevant standard model backgrounds and the prospects for discovering this Higgs decay through a photon and missing transverse energy signal at the LHC in terms of a simplified model. We also give an explicit model with manifest, but spontaneously broken, supersymmetry in which the usual MSSM soft terms are promoted to supersymmetric operators involving a dynamical goldstino supermultiplet. This model can give rise to a SM-like CP-even neutral Higgs particle with a mass of 125 GeV, without requiring substantial radiative corrections, and with couplings sufficiently large for a signal discovery through the above mentioned Higgs decay channel with the upcoming data from the LHC.Comment: 28 pages, 5 figures, 4 tables; v2: updated to JHEP version, references adde
    • 

    corecore