65 research outputs found

    Characterisation of prostate cancer lesions in heterozygous Men1 mutant mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations of the <it>MEN1 </it>gene predispose to multiple endocrine neoplasia type 1 (MEN1) syndrome. Our group and others have shown that <it>Men1 </it>disruption in mice recapitulates MEN1 pathology. Intriguingly, rare lesions in hormone-dependent tissues, such as prostate and mammary glands, were also observed in the <it>Men1 </it>mutant mice.</p> <p>Methods</p> <p>To study the occurrence of prostate lesions, we followed a male mouse cohort of 47 <it>Men1</it><sup>+/- </sup>mice and 23 age-matched control littermates, starting at 18 months of age, and analysed the prostate glands from the cohort.</p> <p>Results</p> <p>Six <it>Men1</it><sup>+/- </sup>mice (12.8%) developed prostate cancer, including two adenocarcinomas and four <it>in situ </it>carcinomas, while none of the control mice developed cancerous lesions. The expression of menin encoded by the <it>Men1 </it>gene was found to be drastically reduced in all carcinomas, and partial LOH of the wild-type <it>Men1 </it>allele was detected in three of the five analysed lesions. Using immunostaining for the androgen receptor and p63, a basal epithelial cell marker, we demonstrated that the menin-negative prostate cancer cells did not display p63 expression and that the androgen receptor was expressed but more heterogeneous in these lesions. Furthermore, our data showed that the expression of the cyclin-dependent kinase inhibitor CDKN1B (p27), a <it>Men1 </it>target gene known to be inactivated during prostate cell tumorigenesis, was notably decreased in the prostate cancers that developed in the mutant mice.</p> <p>Conclusion</p> <p>Our work suggests the possible involvement of <it>Men1 </it>inactivation in the tumorigenesis of the prostate gland.</p

    Genomic Analysis of Individual Differences in Ethanol Drinking: Evidence for Non-Genetic Factors in C57BL/6 Mice

    Get PDF
    Genetic analysis of factors affecting risk to develop excessive ethanol drinking has been extensively studied in humans and animal models for over 20 years. However, little progress has been made in determining molecular mechanisms underlying environmental or non-genetic events contributing to variation in ethanol drinking. Here, we identify persistent and substantial variation in ethanol drinking behavior within an inbred mouse strain and utilize this model to identify gene networks influencing such “non-genetic” variation in ethanol intake. C57BL/6NCrl mice showed persistent inter-individual variation of ethanol intake in a two-bottle choice paradigm over a three-week period, ranging from less than 1 g/kg to over 14 g/kg ethanol in an 18 h interval. Differences in sweet or bitter taste susceptibility or litter effects did not appreciably correlate with ethanol intake variation. Whole genome microarray expression analysis in nucleus accumbens, prefrontal cortex and ventral midbrain region of individual animals identified gene expression patterns correlated with ethanol intake. Results included several gene networks previously implicated in ethanol behaviors, such as glutamate signaling, BDNF and genes involved in synaptic vesicle function. Additionally, genes functioning in epigenetic chromatin or DNA modifications such as acetylation and/or methylation also had expression patterns correlated with ethanol intake. In verification for the significance of the expression findings, we found that a histone deacetylase inhibitor, trichostatin A, caused an increase in 2-bottle ethanol intake. Our results thus implicate specific brain regional gene networks, including chromatin modification factors, as potentially important mechanisms underlying individual variation in ethanol intake

    Acapsular Staphylococcus aureus with a non-functional agr regains capsule expression after passage through the bloodstream in a bacteremia mouse model

    Get PDF
    Selection pressures exerted on Staphylococcus aureus by host factors during infection may lead to the emergence of regulatory phenotypes better adapted to the infection site. Traits convenient for persistence may be fixed by mutation thus turning these mutants into microevolution endpoints. The feasibility that stable, non-encapsulated S. aureus mutants can regain expression of key virulence factors for survival in the bloodstream was investigated. S. aureus agr mutant HU-14 (IS256 insertion in agrC) from a patient with chronic osteomyelitis was passed through the bloodstream using a bacteriemia mouse model and derivative P3.1 was obtained. Although IS256 remained inserted in agrC, P3.1 regained production of capsular polysaccharide type 5 (CP5) and staphyloxanthin. Furthermore, P3.1 expressed higher levels of asp23/SigB when compared with parental strain HU-14. Strain P3.1 displayed decreased osteoclastogenesis capacity, thus indicating decreased adaptability to bone compared with strain HU-14 and exhibited a trend to be more virulent than parental strain HU-14. Strain P3.1 exhibited the loss of one IS256 copy, which was originally located in the HU-14 noncoding region between dnaG (DNA primase) and rpoD (sigA). This loss may be associated with the observed phenotype change but the mechanism remains unknown. In conclusion, S. aureus organisms that escape the infected bone may recover the expression of key virulence factors through a rapid microevolution pathway involving SigB regulation of key virulence factors.Fil: Suligoy Lozano, Carlos Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Díaz, Rocío E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Gehrke, Ana-katharina Elsa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; ArgentinaFil: Ring, Natalie. University of Edinburgh; Reino UnidoFil: Yebra, Gonzalo. University of Edinburgh; Reino UnidoFil: Alves, Joana. University of Edinburgh; Reino UnidoFil: Gómez, Marisa Ileana. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; ArgentinaFil: Wendler, Sindy. Universitätsklinikum Jena Und Medizinische Fakultät; AlemaniaFil: Fitzgerald, J. Ross. University of Edinburgh; Reino UnidoFil: Tuchscherr, Lorena. Jena University Hospital; AlemaniaFil: Löffler, Bettina. Jena University Hospital; AlemaniaFil: Sordelli, Daniel Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Noto Llana, Mariangeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Buzzola, Fernanda Roxana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentin

    rs1004819 Is the Main Disease-Associated IL23R Variant in German Crohn's Disease Patients: Combined Analysis of IL23R, CARD15, and OCTN1/2 Variants

    Get PDF
    The IL23R gene has been identified as a susceptibility gene for inflammatory bowel disease (IBD) in the North American population. The aim of our study was to test this association in a large German IBD cohort and to elucidate potential interactions with other IBD genes as well as phenotypic consequences of IL23R variants. Genomic DNA from 2670 Caucasian individuals including 833 patients with Crohn's disease (CD), 456 patients with ulcerative colitis (UC), and 1381 healthy unrelated controls was analyzed for 10 IL23R SNPs. Genotyping included the NOD2 variants p.Arg702Trp, p.Gly908Arg, and p.Leu1007fsX1008 and polymorphisms in SLC22A4/OCTN1 (1672 C-->T) and SLC22A5/OCTN2 (-207 G-->C). All IL23R gene variants analyzed displayed highly significant associations with CD. The strongest association was found for the SNP rs1004819 [P = 1.92x10(-11); OR 1.56; 95 % CI (1.37-1.78)]. 93.2% of the rs1004819 TT homozygous carriers as compared to 78% of CC wildtype carriers had ileal involvement [P = 0.004; OR 4.24; CI (1.46-12.34)]. The coding SNP rs11209026 (p.Arg381Gln) was protective for CD [P = 8.04x10(-8); OR 0.43; CI (0.31-0.59)]. Similar, but weaker associations were found in UC. There was no evidence for epistasis between the IL23R gene and the CD susceptibility genes CARD15 and SLC22A4/5. IL23R is an IBD susceptibility gene, but has no epistatic interaction with CARD15 and SLC22A4/5. rs1004819 is the major IL23R variant associated with CD in the German population, while the p.Arg381Gln IL23R variant is a protective marker for CD and UC

    Effective and safe proton pump inhibitor therapy in acid-related diseases – A position paper addressing benefits and potential harms of acid suppression

    Full text link

    Mutational analysis of the adaptor protein 2 sigma subunit (AP2S1) gene: search for autosomal dominant hypocalcemia type 3 (ADH3).

    No full text
    CONTEXT: Autosomal dominant hypocalcemia (ADH) types 1 and 2 are due to calcium-sensing receptor (CASR) and G-protein subunit-α11 (GNA11) gain-of-function mutations, respectively, whereas CASR and GNA11 loss-of-function mutations result in familial hypocalciuric hypercalcemia (FHH) types 1 and 2, respectively. Loss-of-function mutations of adaptor protein-2 sigma subunit (AP2σ 2), encoded by AP2S1, cause FHH3, and we therefore sought for gain-of-function AP2S1 mutations that may cause an additional form of ADH, which we designated ADH3. OBJECTIVE: The objective of the study was to investigate the hypothesis that gain-of-function AP2S1 mutations may cause ADH3. DESIGN: The sample size required for the detection of at least one mutation with a greater than 95% likelihood was determined by binomial probability analysis. Nineteen patients (including six familial cases) with hypocalcemia in association with low or normal serum PTH concentrations, consistent with ADH, but who did not have CASR or GNA11 mutations, were ascertained. Leukocyte DNA was used for sequence and copy number variation analysis of AP2S1. RESULTS: Binomial probability analysis, using the assumption that AP2S1 mutations would occur in hypocalcemic patients at a prevalence of 20%, which is observed in FHH patients without CASR or GNA11 mutations, indicated that the likelihood of detecting at least one AP2S1 mutation was greater than 95% and greater than 98% in sample sizes of 14 and 19 hypocalcemic patients, respectively. AP2S1 mutations and copy number variations were not detected in the 19 hypocalcemic patients. CONCLUSION: The absence of AP2S1 abnormalities in hypocalcemic patients, suggests that ADH3 may not occur or otherwise represents a rare hypocalcemic disorder

    Candidate Genes Expression Profile Associated with Antidepressants Response in the GENDEP Study:Differentiating between Baseline ‘Predictors’ and Longitudinal ‘Targets’

    Get PDF
    To improve the ‘personalized-medicine ’ approach to the treatment of depression, we need to identify biomarkers that, assessed before starting treatment, predict future response to antidepressants (‘predictors’), as well as biomarkers that are targeted by antidepressants and change longitudinally during the treatment (‘targets’). In this study, we tested the leukocyte mRNA expression levels of gene
    corecore