73 research outputs found
InVERT molding for scalable control of tissue microarchitecture
Complex tissues contain multiple cell types that are hierarchically organized within morphologically and functionally distinct compartments. Construction of engineered tissues with optimized tissue architecture has been limited by tissue fabrication techniques, which do not enable versatile microscale organization of multiple cell types in tissues of size adequate for physiological studies and tissue therapies. Here we present an ‘Intaglio-Void/Embed-Relief Topographic molding’ method for microscale organization of many cell types, including induced pluripotent stem cell-derived progeny, within a variety of synthetic and natural extracellular matrices and across tissues of sizes appropriate for in vitro, pre-clinical, and clinical studies. We demonstrate that compartmental placement of non-parenchymal cells relative to primary or induced pluripotent stem cell-derived hepatocytes, compartment microstructure, and cellular composition modulate hepatic functions. Configurations found to sustain physiological function in vitro also result in survival and function in mice for at least 4 weeks, demonstrating the importance of architectural optimization before implantation.National Institutes of Health (U.S.) (EB008396)National Institutes of Health (U.S.) (DK56966)National Cancer Institute (U.S.) (Cancer Center Support Core Grant P30-CA14051)National Institutes of Health (U.S.). Ruth L. Kirschstein National Research Service Award (1F32DK091007)National Institutes of Health (U.S.). Ruth L. Kirschstein National Research Service Award (1F32DK095529)National Science Foundation (U.S.). Graduate Research Fellowship Program (1122374
Total and corrected antioxidant capacity in hemodialyzed patients
BACKGROUND: Oxidative stress may play a critical role in the vascular disease of end stage renal failure and hemodialysis patients. Studies, analyzing either discrete analytes and antioxidant substances, or the integrated total antioxidant activity of human plasma during hemodialysis, give contradictory results. METHODS: Recently, we have introduced a new automated method for the determination of Total Antioxidant Capacity (TAC) of human plasma. We have serially measured TAC and corrected TAC (cTAC: after subtraction of the interactions due to endogenous uric acid, bilirubin and albumin) in 10 patients before the onset of the dialysis session, 10 min, 30 min, 1 h, 2 h and 3 h into the procedure and after completion of the session. RESULTS: Our results indicate that TAC decreases, reaching minimum levels at 2 h. However, corrected TAC increases with t(1/2 )of about 30 min. We then repeated the measurements in 65 patients undergoing dialysis with different filters (36 patients with ethylene vinyl alcohol copolymer resin filter -Eval-, 23 patients with two polysulfone filters -10 with F6 and 13 with PSN140-, and 6 patients with hemophan filters). Three specimens were collected (0, 30, 240 min). The results of this second group confirm our initial results, while no significant difference was observed using either filter. CONCLUSIONS: Our results are discussed under the point of view of possible mechanisms of modification of endogenous antioxidants, and the interaction of lipid- and water-soluble antioxidants
In vitro suppression of the MMP-3 gene in normal and cytokine-treated human chondrosarcoma using small interfering RNA
<p>Abstract</p> <p>Background</p> <p>Matrix metalloproteinase (MMPs) synthesized and secreted from connective tissue cells have been thought to participate in degradation of the extracellular matrix. Increased MMPs activities that degrade proteoglycans have been measured in osteoarthritis cartilage. This study aims to suppress the expression of the <it>MMP-3 </it>gene in <it>in vitro </it>human chondrosarcoma using siRNA.</p> <p>Methods</p> <p>Cells were categorized into four groups: control (G.1); transfection solution treated (G.2); negative control siRNA treated (G.3); and <it>MMP-3 </it>siRNA treated (G.4). All four groups were further subdivided into two groups - treated and non-treated with IL-1β- following culture for 48 and 72 h. We observed the effects of gene suppression according to cell morphology, glycosaminoglycan (GAG) and hyaluronan (HA) production, and gene expression by using real-time polymerase chain reaction (PCR).</p> <p>Results</p> <p>In IL-1β treated cells the apoptosis rate in G.4 was found to be lower than in all other groups, while viability and mitotic rate were higher than in all other groups (<it>p </it>< 0.05). The production of GAG and HA in G.4 was significantly higher than the control group (<it>p </it>< 0.05). <it>MMP-3 </it>gene expression was downregulated significantly (<it>p </it>< 0.05).</p> <p>Conclusion</p> <p><it>MMP-3 </it>specific siRNA can inhibit the expression of <it>MMP-3 </it>in chondrosarcoma. This suggests that <it>MMP-3 </it>siRNA has the potential to be a useful preventive and therapeutic agent for osteoarthritis.</p
Nuclear Translocation of β-Catenin during Mesenchymal Stem Cells Differentiation into Hepatocytes Is Associated with a Tumoral Phenotype
Wnt/β-catenin pathway controls biochemical processes related to cell differentiation. In committed cells the alteration of this pathway has been associated with tumors as hepatocellular carcinoma or hepatoblastoma. The present study evaluated the role of Wnt/β-catenin activation during human mesenchymal stem cells differentiation into hepatocytes. The differentiation to hepatocytes was achieved by the addition of two different conditioned media. In one of them, β-catenin nuclear translocation, up-regulation of genes related to the Wnt/β-catenin pathway, such as Lrp5 and Fzd3, as well as the oncogenes c-myc and p53 were observed. While in the other protocol there was a Wnt/β-catenin inactivation. Hepatocytes with nuclear translocation of β-catenin also had abnormal cellular proliferation, and expressed membrane proteins involved in hepatocellular carcinoma, metastatic behavior and cancer stem cells. Further, these cells had also increased auto-renewal capability as shown in spheroids formation assay. Comparison of both differentiation protocols by 2D-DIGE proteomic analysis revealed differential expression of 11 proteins with altered expression in hepatocellular carcinoma. Cathepsin B and D, adenine phosphoribosyltransferase, triosephosphate isomerase, inorganic pyrophosphatase, peptidyl-prolyl cis-trans isomerase A or lactate dehydrogenase β-chain were up-regulated only with the protocol associated with Wnt signaling activation while other proteins involved in tumor suppression, such as transgelin or tropomyosin β-chain were down-regulated in this protocol. In conclusion, our results suggest that activation of the Wnt/β-catenin pathway during human mesenchymal stem cells differentiation into hepatocytes is associated with a tumoral phenotype
The RSPO–LGR4/5–ZNRF3/RNF43 module controls liver zonation and size
LGR4/5 receptors and their cognate RSPO ligands potentiate Wnt/β-catenin signalling and promote proliferation and tissue homeostasis in epithelial stem cell compartments. In the liver, metabolic zonation requires a Wnt/β-catenin signalling gradient, but the instructive mechanism controlling its spatiotemporal regulation is not known. We have now identified the RSPO-LGR4/5-ZNRF3/RNF43 module as a master regulator of Wnt/β-catenin-mediated metabolic liver zonation. Liver-specific LGR4/5 loss of function (LOF) or RSPO blockade disrupted hepatic Wnt/β-catenin signalling and zonation. Conversely, pathway activation in ZNRF3/RNF43 LOF mice or with recombinant RSPO1 protein expanded the hepatic Wnt/β-catenin signalling gradient in a reversible and LGR4/5-dependent manner. Recombinant RSPO1 protein increased liver size and improved liver regeneration, whereas LGR4/5 LOF caused the opposite effects, resulting in hypoplastic livers. Furthermore, we show that LGR4(+) hepatocytes throughout the lobule contribute to liver homeostasis without zonal dominance. Taken together, our results indicate that the RSPO-LGR4/5-ZNRF3/RNF43 module controls metabolic liver zonation and is a hepatic growth/size rheostat during development, homeostasis and regeneration
A new era for understanding amyloid structures and disease
The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention
Phytobezoar in a jejunal diverticulum as a cause of small bowel obstruction: a case report
<p>Abstract</p> <p>Introduction</p> <p>Phytobezoars are concretions of poorly digested fruit and vegetable fibers found in the alimentary tract. Previous gastric resection, gastrojejunostomy, or pyloroplasty predispose people to bezoar formation. Small-bowel bezoars normally come from the stomach, and primary small-bowel bezoars are very rare. They are seen only in patients with underlying small-bowel diseases such as diverticula, strictures, or tumors. Primary small-bowel bezoars almost always present as intestinal obstructions, although it is a very rare cause, being responsible for less than 3% of all small-bowel obstructions in one series. Jejunal diverticula are rare, with an incidence of less than 0.5%. They are usually asymptomatic pseudodiverticula of pulsion type, and complications are reported in 10% to 30% of patients. A phytobezoar in a jejunal diverticulum is an extremely rare presentation.</p> <p>Case presentation</p> <p>A 78-year-old Pakistani man presented to our clinic with small-bowel obstruction. Upon exploration, we found a primary small-bowel bezoar originating in a jejunal diverticulum and causing jejunal obstruction. Resection and anastomosis of the jejunal segment harboring the diverticulum was performed, and our patient had an uneventful recovery.</p> <p>Conclusion</p> <p>Primary small-bowel bezoars are very rare but must be kept in mind as a possible cause of small-bowel obstruction.</p
- …