106 research outputs found

    Phosphate Starvation Triggers Production and Secretion of an Extracellular Lipoprotein in Caulobacter crescentus

    Get PDF
    Life in oligotrophic environments necessitates quick adaptive responses to a sudden lack of nutrients. Secretion of specific degradative enzymes into the extracellular medium is a means to mobilize the required nutrient from nearby sources. The aquatic bacterium Caulobacter crescentus must often face changes in its environment such as phosphate limitation. Evidence reported in this paper indicates that under phosphate starvation, C. crescentus produces a membrane surface-anchored lipoprotein named ElpS subsequently released into the extracellular medium. A complete set of 12 genes encoding a type II secretion system (T2SS) is located adjacent to the elpS locus in the C. crescentus genome. Deletion of this T2SS impairs release of ElpS in the environment, which surprisingly remains present at the cell surface, indicating that the T2SS is not involved in the translocation of ElpS to the outer membrane but rather in its release. Accordingly, treatment with protease inhibitors prevents release of ElpS in the extracellular medium suggesting that ElpS secretion relies on a T2SS-secreted protease. Finally, secretion of ElpS is associated with an increase in alkaline phosphatase activity in culture supernatants, suggesting a role of the secreted protein in inorganic phosphate mobilization. In conlusion, we have shown that upon phosphate starvation, C. crescentus produces an outer membrane bound lipoprotein, ElpS, which is further cleaved and released in the extracellular medium in a T2SS-dependent manner. Our data suggest that ElpS is associated with an alkaline phosphatase activity, thereby allowing the bacterium to gather inorganic phosphates from a poor environment

    Comparative Genomic Characterization of Francisella tularensis Strains Belonging to Low and High Virulence Subspecies

    Get PDF
    Tularemia is a geographically widespread, severely debilitating, and occasionally lethal disease in humans. It is caused by infection by a gram-negative bacterium, Francisella tularensis. In order to better understand its potency as an etiological agent as well as its potential as a biological weapon, we have completed draft assemblies and report the first complete genomic characterization of five strains belonging to the following different Francisella subspecies (subsp.): the F. tularensis subsp. tularensis FSC033, F. tularensis subsp. holarctica FSC257 and FSC022, and F. tularensis subsp. novicida GA99-3548 and GA99-3549 strains. Here, we report the sequencing of these strains and comparative genomic analysis with recently available public Francisella sequences, including the rare F. tularensis subsp. mediasiatica FSC147 strain isolate from the Central Asian Region. We report evidence for the occurrence of large-scale rearrangement events in strains of the holarctica subspecies, supporting previous proposals that further phylogenetic subdivisions of the Type B clade are likely. We also find a significant enrichment of disrupted or absent ORFs proximal to predicted breakpoints in the FSC022 strain, including a genetic component of the Type I restriction-modification defense system. Many of the pseudogenes identified are also disrupted in the closely related rarely human pathogenic F. tularensis subsp. mediasiatica FSC147 strain, including modulator of drug activity B (mdaB) (FTT0961), which encodes a known NADPH quinone reductase involved in oxidative stress resistance. We have also identified genes exhibiting sequence similarity to effectors of the Type III (T3SS) and components of the Type IV secretion systems (T4SS). One of the genes, msrA2 (FTT1797c), is disrupted in F. tularensis subsp. mediasiatica and has recently been shown to mediate bacterial pathogen survival in host organisms. Our findings suggest that in addition to the duplication of the Francisella Pathogenicity Island, and acquisition of individual loci, adaptation by gene loss in the more recently emerged tularensis, holarctica, and mediasiatica subspecies occurred and was distinct from evolutionary events that differentiated these subspecies, and the novicida subspecies, from a common ancestor. Our findings are applicable to future studies focused on variations in Francisella subspecies pathogenesis, and of broader interest to studies of genomic pathoadaptation in bacteria

    Modeling morphological instabilities in lipid membranes with anchored amphiphilic polymers

    Get PDF
    Anchoring molecules, like amphiphilic polymers, are able to dynamically regulate membrane morphology. Such molecules insert their hydrophobic groups into the bilayer, generating a local membrane curvature. In order to minimize the elastic energy penalty, a dynamic shape instability may occur, as in the case of the curvature-driven pearling instability or the polymer-induced tubulation of lipid vesicles. We review recent works on modeling of such instabilities by means of a mesoscopic dynamic model of the phase-field kind, which take into account the bending energy of lipid bilayers

    An epithelial serine protease activates the amiloride-sensitive sodium channel

    No full text
    Sodium balance, and ultimately blood pressure and extracellular fluid volume, is maintained by precise regulation of the activity of the epithelial sodium channel (ENaC). In a Xenopus kidney epithelial cell line (A6), exposure of the apical membrane to the protease inhibitor aprotinin reduces transepithelial sodium transport. Sodium-channel activity can be restored by subsequent exposure to the nonspecific protease trypsin. Using A6 cells and a functional complementation assay to detect increases in ENaC activity, we have cloned a 329-residue protein belonging to the serine protease family. We show that coexpression of this protein with ENaC in Xenopus oocytes increases the activity of the sodium channel by two- to threefold. This channel-activating protease (CAP1) is expressed in kidney, gut, lung, skin and ovary. Sequence analysis predicts that CAP1 is a secreted and/or glycosylphosphatidylinositol-anchored protein: ENaC activity would thus be regulated by the activity of a protease expressed at the surface of the same cell. This previously undiscovered mechanism for autocrine regulation may apply to other ion channels, in particular to members of the ENaC family that are present in neurons and epithelial cells

    Social Interaction Effects on Fertility: Intentions and Behaviors

    No full text
    The existing literature shows that social interactions in individuals' networks affect their reproductive attitudes and behaviors through three mechanisms: social influence, social learning, and social support. In this paper, we discuss to what extent the Theory of Planned Behavior (TPB), an individual based theorization of intentions and behavior used to model fertility, takes these social mechanisms into account. We argue that the TPB already integrates social influence and that it could easily accommodate the two other social network mechanisms. By doing so, the theory would be enriched in two respects. First, it will explain more completely how macro level changes eventually ends in micro level changes in behavioral intentions. Indeed, mechanisms of social influence may explain why changes in representations of parenthood and ideal family size can be slower than changes in socio-economic conditions and institutions. Social learning mechanisms should also be considered, since they are crucial to distinguish who adopts new behavioral beliefs and practices, when change at the macro level finally sinks in. Secondly, relationships are a capital of services that can complement institutional offering (informal child care) as well as a capital of knowledge which help individuals navigate in a complex institutional reality, providing a crucial element to explain heterogeneity in the successful realization of fertility intentions across individuals. We develop specific hypotheses concerning the effect of social interactions on fertility intentions and their realization to conclude with a critical review of the existing surveys suitable to test them and their limits
    corecore