191 research outputs found

    MEG Can Map Short and Long-Term Changes in Brain Activity following Deep Brain Stimulation for Chronic Pain

    Get PDF
    Deep brain stimulation (DBS) has been shown to be clinically effective for some forms of treatment-resistant chronic pain, but the precise mechanisms of action are not well understood. Here, we present an analysis of magnetoencephalography (MEG) data from a patient with whole-body chronic pain, in order to investigate changes in neural activity induced by DBS for pain relief over both short- and long-term. This patient is one of the few cases treated using DBS of the anterior cingulate cortex (ACC). We demonstrate that a novel method, null-beamforming, can be used to localise accurately brain activity despite the artefacts caused by the presence of DBS electrodes and stimulus pulses. The accuracy of our source localisation was verified by correlating the predicted DBS electrode positions with their actual positions. Using this beamforming method, we examined changes in whole-brain activity comparing pain relief achieved with deep brain stimulation (DBS ON) and compared with pain experienced with no stimulation (DBS OFF). We found significant changes in activity in pain-related regions including the pre-supplementary motor area, brainstem (periaqueductal gray) and dissociable parts of caudal and rostral ACC. In particular, when the patient reported experiencing pain, there was increased activity in different regions of ACC compared to when he experienced pain relief. We were also able to demonstrate long-term functional brain changes as a result of continuous DBS over one year, leading to specific changes in the activity in dissociable regions of caudal and rostral ACC. These results broaden our understanding of the underlying mechanisms of DBS in the human brain

    A Mumps Outbreak in Vojvodina, Serbia, in 2012 Underlines the Need for Additional Vaccination Opportunities for Young Adults

    Get PDF
    In 2012, mumps was introduced from Bosnia and Herzegovina to Vojvodina, causing an outbreak with 335 reported cases. The present manuscript analyses the epidemiological and laboratory characteristics of this outbreak, identifies its main causes and suggests potential future preventive measures. Sera of 133 patients were tested for mumps-specific antibodies by ELISA and 15 nose/throat swabs were investigated for mumps virus RNA by RT-PCR. IgG antibodies were found in 127 patients (95.5%). Mumps infection was laboratory-confirmed in 53 patients, including 44 IgM and 9 PCR positive cases. All other 282 cases were classified as epidemiologically-confirmed. More than half of the patients (n = 181, 54%) were 20-29 years old, followed by the 15-19 age bracket (n = 95, 28.4%). Twice as many males as females were affected (67% versus 33%). Disease complications were reported in 13 cases (3.9%), including 9 patients with orchitis and 4 with pancreatitis. According to medical records or anamnestic data, 190 patients (56.7%) were immunized with two doses and 35 (10.4%) with one dose of mumps-containing vaccine. The Serbian sequences corresponded to a minor genotype G variant detected during the 2011/2012 mumps outbreak in Bosnia and Herzegovina. Vaccine failures, the initial one-dose immunization policy and a vaccine shortage between 1999 and 2002 contributed to the outbreak. Additional vaccination opportunities should be offered to young adults during transition periods in their life trajectories

    Chemosensory Cues to Conspecific Emotional Stress Activate Amygdala in Humans

    Get PDF
    Alarm substances are airborne chemical signals, released by an individual into the environment, which communicate emotional stress between conspecifics. Here we tested whether humans, like other mammals, are able to detect emotional stress in others by chemosensory cues. Sweat samples collected from individuals undergoing an acute emotional stressor, with exercise as a control, were pooled and presented to a separate group of participants (blind to condition) during four experiments. In an fMRI experiment and its replication, we showed that scanned participants showed amygdala activation in response to samples obtained from donors undergoing an emotional, but not physical, stressor. An odor-discrimination experiment suggested the effect was primarily due to emotional, and not odor, differences between the two stimuli. A fourth experiment investigated behavioral effects, demonstrating that stress samples sharpened emotion-perception of ambiguous facial stimuli. Together, our findings suggest human chemosensory signaling of emotional stress, with neurobiological and behavioral effects

    Low temperature exposure induces browning of bone marrow stem cell derived adipocytes in vitro

    Get PDF
    Brown and beige adipocytes are characterised as expressing the unique mitochondrial uncoupling protein (UCP)1 for which the primary stimulus in vivo is cold exposure. The extent to which cold-induced UCP1 activation can also be achieved in vitro, and therefore perform a comparable cellular function, is unknown. We report an in vitro model to induce adipocyte browning using bone marrow (BM) derived mesenchymal stem cells (MSC), which relies on differentiation at 32°C instead of 37°C. The low temperature promoted browning in adipogenic cultures, with increased adipocyte differentiation and upregulation of adipogenic and thermogenic factors, especially UCP1. Cells exhibited enhanced uncoupled respiration and metabolic adaptation. Cold-exposed differentiated cells showed a marked translocation of leptin to adipocyte nuclei, suggesting a previously unknown role for leptin in the browning process. These results indicate that BM-MSC can be driven to forming beige-like adipocytes in vitro by exposure to a reduced temperature. This in vitro model will provide a powerful tool to elucidate the precise role of leptin and related hormones in hitherto functions in the browning process

    Nuclear poly(ADP-ribose) activity is a therapeutic target in amyotrophic lateral sclerosis

    Get PDF
    Abstract Amyotrophic lateral sclerosis (ALS) is a devastating and fatal motor neuron disease. Diagnosis typically occurs in the fifth decade of life and the disease progresses rapidly leading to death within ~ 2–5 years of symptomatic onset. There is no cure, and the few available treatments offer only a modest extension in patient survival. A protein central to ALS is the nuclear RNA/DNA-binding protein, TDP-43. In > 95% of ALS patients, TDP-43 is cleared from the nucleus and forms phosphorylated protein aggregates in the cytoplasm of affected neurons and glia. We recently defined that poly(ADP-ribose) (PAR) activity regulates TDP-43-associated toxicity. PAR is a posttranslational modification that is attached to target proteins by PAR polymerases (PARPs). PARP-1 and PARP-2 are the major enzymes that are active in the nucleus. Here, we uncovered that the motor neurons of the ALS spinal cord were associated with elevated nuclear PAR, suggesting elevated PARP activity. Veliparib, a small-molecule inhibitor of nuclear PARP-1/2, mitigated the formation of cytoplasmic TDP-43 aggregates in mammalian cells. In primary spinal-cord cultures from rat, Veliparib also inhibited TDP-43-associated neuronal death. These studies uncover that PAR activity is misregulated in the ALS spinal cord, and a small-molecular inhibitor of PARP-1/2 activity may have therapeutic potential in the treatment of ALS and related disorders associated with abnormal TDP-43 homeostasis

    Mechanisms of hypoxic up-regulation of versican gene expression in macrophages

    Get PDF
    Hypoxia is a hallmark of many pathological tissues. Macrophages accumulate in hypoxic sites and up-regulate a range of hypoxia-inducible genes. The matrix proteoglycan versican has been identified as one such gene, but the mechanisms responsible for hypoxic induction are not fully characterised. Here we investigate the up-regulation of versican by hypoxia in primary human monocyte-derived macrophages (HMDM), and, intriguingly, show that versican mRNA is up-regulated much more highly (>600 fold) by long term hypoxia (5 days) than by 1 day of hypoxia (48 fold). We report that versican mRNA decay rates are not affected by hypoxia, demonstrating that hypoxic induction of versican mRNA is mediated by increased transcription. Deletion analysis of the promoter identified two regions required for high level promoter activity of luciferase reporter constructs in human macrophages. The hypoxia-inducible transcription factor HIF-1 has previously been implicated as a key potential regulator of versican expression in hypoxia, however our data suggest that HIF-1 up-regulation is unlikely to be principally responsible for the high levels of induction observed in HMDM. Treatment of HMDM with two distinct specific inhibitors of Phosphoinositide 3-kinase (PI3K), LY290042 and wortmannin, significantly reduced induction of versican mRNA by hypoxia and provides evidence of a role for PI3K in hypoxic up-regulation of versican expression

    VEGFR2 Translocates to the Nucleus to Regulate Its Own Transcription

    Get PDF
    Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) is the major mediator of the angiogenic effects of VEGF. In addition to its well known role as a membrane receptor that activates multiple signaling pathways, VEGFR2 also has a nuclear localization. However, what VEGFR2 does in the nucleus is still unknown. In the present report we show that, in endothelial cells, nuclear VEGFR2 interacts with several nuclear proteins, including the Sp1, a transcription factor that has been implicated in the regulation of genes needed for angiogenesis. By in vivo chromatin immunoprecipitation (ChIP) assays, we found that VEGFR2 binds to the Sp1-responsive region of the VEGFR2 proximal promoter. These results were confirmed by EMSA assays, using the same region of the VEGFR2 promoter. Importantly, we show that the VEGFR2 DNA binding is directly linked to the transcriptional activation of the VEGFR2 promoter. By reporter assays, we found that the region between -300/-116 relative to the transcription start site is essential to confer VEGFR2-dependent transcriptional activity. It was previously described that nuclear translocation of the VEGFR2 is dependent on its activation by VEGF. In agreement, we observed that the binding of VEGFR2 to DNA requires VEGF activation, being blocked by Bevacizumab and Sunitinib, two anti-angiogenic agents that inhibit VEGFR2 activation. Our findings demonstrate a new mechanism by which VEGFR2 activates its own promoter that could be involved in amplifying the angiogenic response

    Nuclear Translocation of β-Catenin during Mesenchymal Stem Cells Differentiation into Hepatocytes Is Associated with a Tumoral Phenotype

    Get PDF
    Wnt/β-catenin pathway controls biochemical processes related to cell differentiation. In committed cells the alteration of this pathway has been associated with tumors as hepatocellular carcinoma or hepatoblastoma. The present study evaluated the role of Wnt/β-catenin activation during human mesenchymal stem cells differentiation into hepatocytes. The differentiation to hepatocytes was achieved by the addition of two different conditioned media. In one of them, β-catenin nuclear translocation, up-regulation of genes related to the Wnt/β-catenin pathway, such as Lrp5 and Fzd3, as well as the oncogenes c-myc and p53 were observed. While in the other protocol there was a Wnt/β-catenin inactivation. Hepatocytes with nuclear translocation of β-catenin also had abnormal cellular proliferation, and expressed membrane proteins involved in hepatocellular carcinoma, metastatic behavior and cancer stem cells. Further, these cells had also increased auto-renewal capability as shown in spheroids formation assay. Comparison of both differentiation protocols by 2D-DIGE proteomic analysis revealed differential expression of 11 proteins with altered expression in hepatocellular carcinoma. Cathepsin B and D, adenine phosphoribosyltransferase, triosephosphate isomerase, inorganic pyrophosphatase, peptidyl-prolyl cis-trans isomerase A or lactate dehydrogenase β-chain were up-regulated only with the protocol associated with Wnt signaling activation while other proteins involved in tumor suppression, such as transgelin or tropomyosin β-chain were down-regulated in this protocol. In conclusion, our results suggest that activation of the Wnt/β-catenin pathway during human mesenchymal stem cells differentiation into hepatocytes is associated with a tumoral phenotype

    Loss of Metal Ions, Disulfide Reduction and Mutations Related to Familial ALS Promote Formation of Amyloid-Like Aggregates from Superoxide Dismutase

    Get PDF
    Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1) are one of the causes of familial amyotrophic lateral sclerosis (FALS). Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When agitated at acidic pH in the presence of low concentrations of guanidine or acetonitrile, metalated SOD1 formed fibrillar material which bound both thioflavin T and Congo red and had circular dichroism and infrared spectra characteristic of amyloid. While metalated SOD1 did not form amyloid-like aggregates at neutral pH, either removing metals from SOD1 with its intramolecular disulfide bond intact or reducing the intramolecular disulfide bond of metalated SOD1 was sufficient to promote formation of these aggregates. SOD1 formed amyloid-like aggregates both with and without intermolecular disulfide bonds, depending on the incubation conditions, and a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1) formed amyloid-like aggregates at neutral pH under reducing conditions. ALS mutations enhanced the ability of disulfide-reduced SOD1 to form amyloid-like aggregates, and apo-AS-SOD1 formed amyloid-like aggregates at pH 7 only when an ALS mutation was also present. These results indicate that some mutations related to ALS promote formation of amyloid-like aggregates by facilitating the loss of metals and/or by making the intramolecular disulfide bond more susceptible to reduction, thus allowing the conversion of SOD1 to a form that aggregates to form resembling amyloid. Furthermore, the occurrence of amyloid-like aggregates per se does not depend on forming intermolecular disulfide bonds, and multiple forms of such aggregates can be produced from SOD1
    corecore