335 research outputs found

    Macroscopically local correlations can violate information causality

    Full text link
    Although quantum mechanics is a very successful theory, its foundations are still a subject of intense debate. One of the main problems is the fact that quantum mechanics is based on abstract mathematical axioms, rather than on physical principles. Quantum information theory has recently provided new ideas from which one could obtain physical axioms constraining the resulting statistics one can obtain in experiments. Information causality and macroscopic locality are two principles recently proposed to solve this problem. However none of them were proven to define the set of correlations one can observe. In this paper, we present an extension of information causality and study its consequences. It is shown that the two above-mentioned principles are inequivalent: if the correlations allowed by nature were the ones satisfying macroscopic locality, information causality would be violated. This gives more confidence in information causality as a physical principle defining the possible correlation allowed by nature.Comment: are welcome. 6 pages, 4 figs. This is the originally submitted version. The published version contains some bounds on quantum realizations of d2dd isotropic boxes (table 1), found by T. Vertesi, who kindly shared them with u

    All-Versus-Nothing Proof of Einstein-Podolsky-Rosen Steering

    Get PDF
    Einstein-Podolsky-Rosen steering is a form of quantum nonlocality intermediate between entanglement and Bell nonlocality. Although Schr\"odinger already mooted the idea in 1935, steering still defies a complete understanding. In analogy to "all-versus-nothing" proofs of Bell nonlocality, here we present a proof of steering without inequalities rendering the detection of correlations leading to a violation of steering inequalities unnecessary. We show that, given any two-qubit entangled state, the existence of certain projective measurement by Alice so that Bob's normalized conditional states can be regarded as two different pure states provides a criterion for Alice-to-Bob steerability. A steering inequality equivalent to the all-versus-nothing proof is also obtained. Our result clearly demonstrates that there exist many quantum states which do not violate any previously known steering inequality but are indeed steerable. Our method offers advantages over the existing methods for experimentally testing steerability, and sheds new light on the asymmetric steering problem.Comment: 7 pages, 2 figures. Accepted in Sci. Re

    A violation of the uncertainty principle implies a violation of the second law of thermodynamics

    Full text link
    Uncertainty relations state that there exist certain incompatible measurements, to which the outcomes cannot be simultaneously predicted. While the exact incompatibility of quantum measurements dictated by such uncertainty relations can be inferred from the mathematical formalism of quantum theory, the question remains whether there is any more fundamental reason for the uncertainty relations to have this exact form. What, if any, would be the operational consequences if we were able to go beyond any of these uncertainty relations? We give a strong argument that justifies uncertainty relations in quantum theory by showing that violating them implies that it is also possible to violate the second law of thermodynamics. More precisely, we show that violating the uncertainty relations in quantum mechanics leads to a thermodynamic cycle with positive net work gain, which is very unlikely to exist in nature.Comment: 8 pages, revte

    Modern Modal Testing: A Cautionary Tale

    Get PDF
    Over the past 50 years, great advances have been achieved in both analytical modal analysis (i.e. finite element models and analysis) and experimental modal analysis (i.e. modal testing) in aerospace and other fields. With the advent of more powerful computers, higher performance instrumentation and data acquisition systems, and powerful linear modal extraction tools, analysts and test engineers have a breadth and depth of technical resources only dreamed of by our predecessors. However, some observed recent trends indicate that hard lessons learned are being forgotten or ignored, and possibly fundamental concepts are not being understood. These trends have the potential of leading to the degradation of the quality of and confidence in both analytical and test results. These trends are a making of our own doing, and directly related to having ever more powerful computers, programmatic budgetary pressures to limit analysis and testing, and technical capital loss due to the retirement of the senior component of a bimodal workforce. This paper endeavors to highlight some of the most important lessons learned, common pitfalls to hopefully avoid, and potential steps that may be taken to help reverse this trend

    Conclusive quantum steering with superconducting transition edge sensors

    Get PDF
    Quantum steering allows two parties to verify shared entanglement even if one measurement device is untrusted. A conclusive demonstration of steering through the violation of a steering inequality is of considerable fundamental interest and opens up applications in quantum communication. To date all experimental tests with single photon states have relied on post-selection, allowing untrusted devices to cheat by hiding unfavourable events in losses. Here we close this "detection loophole" by combining a highly efficient source of entangled photon pairs with superconducting transition edge sensors. We achieve an unprecedented ~62% conditional detection efficiency of entangled photons and violate a steering inequality with the minimal number of measurement settings by 48 standard deviations. Our results provide a clear path to practical applications of steering and to a photonic loophole-free Bell test.Comment: Preprint of 7 pages, 3 figures; the definitive version is published in Nature Communications, see below. Also, see related experimental work by A. J. Bennet et al., arXiv:1111.0739 and B. Wittmann et al., arXiv:1111.076

    Phage Lambda CIII: A Protease Inhibitor Regulating the Lysis-Lysogeny Decision

    Get PDF
    The ATP-dependent protease FtsH (HflB) complexed with HflKC participates in post-translational control of the lysis-lysogeny decision of bacteriophage lambda by rapid degradation of lambda CII. Both phage-encoded proteins, the CII transcription activator and the CIII polypeptide, are required for efficient lysogenic response. The conserved CIII is both an inhibitor and substrate of FtsH. Here we show that the protease inhibitor CIII is present as oligomeric amphipathic α helical structures and functions as a competitive inhibitor of FtsH by preventing binding of the CII substrate. We identified single alanine substitutions in CIII that abolish its activity. We characterize a dominant negative effect of a CIII mutant. Thus, we suggest that CIII oligomrization is required for its function. Real-time analysis of CII activity demonstrates that the effect of CIII is not seen in the absence of either FtsH or HflKC. When CIII is provided ectopically, CII activity increases linearly as a function of the multiplicity of infection, suggesting that CIII enhances CII stability and the lysogenic response. FtsH function is essential for cellular viability as it regulates the balance in the synthesis of phospholipids and lipopolysaccharides. Genetic experiments confirmed that the CIII bacteriostatic effects are due to inhibition of FtsH. Thus, the early presence of CIII following infection stimulates the lysogenic response, while its degradation at later times ensures the reactivation of FtsH allowing the growth of the established lysogenic cell

    Family coordination in families who have a child with autism spectrum disorder

    Get PDF
    Little is known about the interactions of families where there is a child with autism spectrum disorder (ASD). The present study applies the Lausanne Trilogue Play (LTP) to explore both its applicability to this population as well as to assess resources and areas of deficit in these families. The sample consisted of 68 families with a child with ASD, and 43 families with a typically developing (TD) child. With respect to the global score for family coordination there were several negative correlations: the more severe the symptoms (based on the child’s ADOS score), the more family coordination was dysfunctional. This correlation was particularly high when parents had to play together with the child. In the parts in which only one of the parents played actively with the child, while the other was simply present, some families did achieve scores in the functional range, despite the child’s symptom severity. The outcomes are discussed in terms of their clinical implications both for assessment and for interventio

    Parametric study of EEG sensitivity to phase noise during face processing

    Get PDF
    <b>Background: </b> The present paper examines the visual processing speed of complex objects, here faces, by mapping the relationship between object physical properties and single-trial brain responses. Measuring visual processing speed is challenging because uncontrolled physical differences that co-vary with object categories might affect brain measurements, thus biasing our speed estimates. Recently, we demonstrated that early event-related potential (ERP) differences between faces and objects are preserved even when images differ only in phase information, and amplitude spectra are equated across image categories. Here, we use a parametric design to study how early ERP to faces are shaped by phase information. Subjects performed a two-alternative force choice discrimination between two faces (Experiment 1) or textures (two control experiments). All stimuli had the same amplitude spectrum and were presented at 11 phase noise levels, varying from 0% to 100% in 10% increments, using a linear phase interpolation technique. Single-trial ERP data from each subject were analysed using a multiple linear regression model. <b>Results: </b> Our results show that sensitivity to phase noise in faces emerges progressively in a short time window between the P1 and the N170 ERP visual components. The sensitivity to phase noise starts at about 120–130 ms after stimulus onset and continues for another 25–40 ms. This result was robust both within and across subjects. A control experiment using pink noise textures, which had the same second-order statistics as the faces used in Experiment 1, demonstrated that the sensitivity to phase noise observed for faces cannot be explained by the presence of global image structure alone. A second control experiment used wavelet textures that were matched to the face stimuli in terms of second- and higher-order image statistics. Results from this experiment suggest that higher-order statistics of faces are necessary but not sufficient to obtain the sensitivity to phase noise function observed in response to faces. <b>Conclusion: </b> Our results constitute the first quantitative assessment of the time course of phase information processing by the human visual brain. We interpret our results in a framework that focuses on image statistics and single-trial analyses

    Partial tetraplegic syndrome as a complication of a mobilizing/manipulating procedure of the cervical spine in a man with Forestier's disease: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Even if performed by qualified physical therapists, spinal manipulation and mobilization can cause adverse events. This holds true particularly for the cervical spine. In light of the substantial risks, the benefits of cervical spine manipulation may be outweighed by the possibility of further injury.</p> <p>Case presentation</p> <p>We present the case of a 56-year-old Caucasian man with Forestier's disease who went to see a physiotherapist to relieve his aching neck while on a holiday trip. Following the procedure, he was transferred to a local hospital with a partial tetraplegic syndrome due to a cervical 6/7 luxation fracture. Reportedly, the physiotherapist took neither a detailed history, nor adequate diagnostic measures.</p> <p>Conclusions</p> <p>This case highlights the potentially dangerous complications associated with cervical spine mobilization/manipulation. If guidelines concerning cervical spine mobilization and manipulation practices had been followed, this adverse event could have been avoided.</p

    Imaging of ependymomas: MRI and CT

    Get PDF
    The imaging features of intracranial and spinal ependymoma are reviewed with an emphasis on conventional magnetic resonance imaging (MRI), perfusion MRI and proton magnetic resonance spectroscopy, and computed tomography. Imaging manifestations of leptomeningeal dissemination of disease are described. Finally, salient imaging features obtained in the postoperative period to evaluate completeness of surgical resection, and thereafter for long-term surveillance for disease recurrence, are reviewed
    corecore