29 research outputs found

    Global challenges for seagrass conservation

    Get PDF
    Seagrasses, flowering marine plants that form underwater meadows, play a significant global role in supporting food security, mitigating climate change and supporting biodiversity. Although progress is being made to conserve seagrass meadows in select areas, most meadows remain under significant pressure resulting in a decline in meadow condition and loss of function. Effective management strategies need to be implemented to reverse seagrass loss and enhance their fundamental role in coastal ocean habitats. Here we propose that seagrass meadows globally face a series of significant common challenges that must be addressed from a multifaceted and interdisciplinary perspective in order to achieve global conservation of seagrass meadows. The six main global challenges to seagrass conservation are (1) a lack of awareness of what seagrasses are and a limited societal recognition of the importance of seagrasses in coastal systems; (2) the status of many seagrass meadows are unknown, and up-to-date information on status and condition is essential; (3) understanding threatening activities at local scales is required to target management actions accordingly; (4) expanding our understanding of interactions between the socio-economic and ecological elements of seagrass systems is essential to balance the needs of people and the planet; (5) seagrass research should be expanded to generate scientific inquiries that support conservation actions; (6) increased understanding of the linkages between seagrass and climate change is required to adapt conservation accordingly. We also explicitly outline a series of proposed policy actions that will enable the scientific and conservation community to rise to these challenges. We urge the seagrass conservation community to engage stakeholders from local resource users to international policy-makers to address the challenges outlined here, in order to secure the future of the world’s seagrass ecosystems and maintain the vital services which they supply

    Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane

    Full text link

    MODULATION OF VASOPRESSIN-ELICITED WATER TRANSPORT BY TRAFFICKING OF AQUAPORIN2-CONTAINING VESICLES

    No full text
    Vasopressin or AVP regulates water reabsorption by the kidney inner medullary collecting duct (IMCD) through the insertion and removal of aquaporin (AQP) 2 water channels into the IMCD apical membrane. AVP-elicited trafficking of AQP2 with the apical membrane occurs via a specialized population of vesicles that resemble synaptic vesicles in neurons. AQP2 vesicles and the IMCD apical membrane contain homologs of vesicle-targeting and signal transduction proteins found in neurons. Expression studies of AQP2, including human AQP2 mutants, suggest that the carboxyl-terminal domain of AQP2 is important in AQP2 trafficking, particularly as a site for cAMP-dependent protein kinase phosphorylation. These present data reveal that IMCD cells possess a complex integrated-signaling and vesicle-trafficking machinery that provides integration of AVP-elicited water transport with many other parameters within the IMCD cell as well as kidney
    corecore