166 research outputs found

    Variable Anisotropic Brain Electrical Conductivities in Epileptogenic Foci

    Get PDF
    Source localization models assume brain electrical conductivities are isotropic at about 0.33 S/m. These assumptions have not been confirmed ex vivo in humans. This study determined bidirectional electrical conductivities from pediatric epilepsy surgery patients. Electrical conductivities perpendicular and parallel to the pial surface of neocortex and subcortical white matter (n = 15) were measured using the 4-electrode technique and compared with clinical variables. Mean (±SD) electrical conductivities were 0.10 ± 0.01 S/m, and varied by 243% from patient to patient. Perpendicular and parallel conductivities differed by 45%, and the larger values were perpendicular to the pial surface in 47% and parallel in 40% of patients. A perpendicular principal axis was associated with normal, while isotropy and parallel principal axes were linked with epileptogenic lesions by MRI. Electrical conductivities were decreased in patients with cortical dysplasia compared with non-dysplasia etiologies. The electrical conductivity values of freshly excised human brain tissues were approximately 30% of assumed values, varied by over 200% from patient to patient, and had erratic anisotropic and isotropic shapes if the MRI showed a lesion. Understanding brain electrical conductivity and ways to non-invasively measure them are probably necessary to enhance the ability to localize EEG sources from epilepsy surgery patients

    Changing Patterns of Microhabitat Utilization by the Threespot Damselfish, Stegastes planifrons, on Caribbean Reefs

    Get PDF
    Background: The threespot damselfish, Stegastes planifrons (Cuvier), is important in mediating interactions among corals, algae, and herbivores on Caribbean coral reefs. The preferred microhabitat of S. planifrons is thickets of the branching staghorn coral Acropora cervicornis. Within the past few decades, mass mortality of A. cervicornis from white-band disease and other factors has rendered this coral a minor ecological component throughout most of its range. Methodology/Principal Findings: Survey data from Jamaica (heavily fished), Florida and the Bahamas (moderately fished), the Cayman Islands (lightly to moderately fished), and Belize (lightly fished) indicate that distributional patterns of S. planifrons are positively correlated with live coral cover and topographic complexity. Our results suggest that speciesspecific microhabitat preferences and the availability of topographically complex microhabitats are more important than the abundance of predatory fish as proximal controls on S. planifrons distribution and abundance. Conclusions/Significance: The loss of the primary microhabitat of S. planifrons—A. cervicornis—has forced a shift in the distribution and recruitment of these damselfish onto remaining high-structured corals, especially the Montastraea annulari

    Mechanomyographic amplitude and frequency responses during dynamic muscle actions: a comprehensive review

    Get PDF
    The purpose of this review is to examine the literature that has investigated mechanomyographic (MMG) amplitude and frequency responses during dynamic muscle actions. To date, the majority of MMG research has focused on isometric muscle actions. Recent studies, however, have examined the MMG time and/or frequency domain responses during various types of dynamic activities, including dynamic constant external resistance (DCER) and isokinetic muscle actions, as well as cycle ergometry. Despite the potential influences of factors such as changes in muscle length and the thickness of the tissue between the muscle and the MMG sensor, there is convincing evidence that during dynamic muscle actions, the MMG signal provides valid information regarding muscle function. This argument is supported by consistencies in the MMG literature, such as the close relationship between MMG amplitude and power output and a linear increase in MMG amplitude with concentric torque production. There are still many issues, however, that have yet to be resolved, and the literature base for MMG during both dynamic and isometric muscle actions is far from complete. Thus, it is important to investigate the unique applications of MMG amplitude and frequency responses with different experimental designs/methodologies to continually reassess the uses/limitations of MMG

    Using human artificial chromosomes to study centromere assembly and function

    Get PDF

    Cardiovascular disease and the role of oral bacteria

    Get PDF
    In terms of the pathogenesis of cardiovascular disease (CVD) the focus has traditionally been on dyslipidemia. Over the decades our understanding of the pathogenesis of CVD has increased, and infections, including those caused by oral bacteria, are more likely involved in CVD progression than previously thought. While many studies have now shown an association between periodontal disease and CVD, the mechanisms underpinning this relationship remain unclear. This review gives a brief overview of the host-bacterial interactions in periodontal disease and virulence factors of oral bacteria before discussing the proposed mechanisms by which oral bacterial may facilitate the progression of CVD

    Long-Range Temporal Correlations Reflect Treatment Response in the Electroencephalogram of Patients with Infantile Spasms

    Full text link
    Infantile spasms syndrome is an epileptic encephalopathy in which prompt diagnosis and treatment initiation are critical to therapeutic response. Diagnosis of the disease heavily depends on the identification of characteristic electroencephalographic (EEG) patterns, including hypsarrhythmia. However, visual assessment of the presence and characteristics of hypsarrhythmia is challenging because multiple variants of the pattern exist, leading to poor inter-rater reliability. We investigated whether a quantitative measurement of the control of neural synchrony in the EEGs of infantile spasms patients could be used to reliably distinguish the presence of hypsarrhythmia and indicate successful treatment outcomes. We used autocorrelation and Detrended Fluctuation Analysis (DFA) to measure the strength of long-range temporal correlations in 21 infantile spasms patients before and after treatment and 21 control subjects. The strength of long-range temporal correlations was significantly lower in patients with hypsarrhythmia than control patients, indicating decreased control of neural synchrony. There was no difference between patients without hypsarrhythmia and control patients. Further, the presence of hypsarrhythmia could be classified based on the DFA exponent and intercept with 92% accuracy using a support vector machine. Successful treatment was marked by a larger increase in the DFA exponent compared to those in which spasms persisted. These results suggest that the strength of long-range temporal correlations is a marker of pathological cortical activity that correlates with treatment response. Combined with current clinical measures, this quantitative tool has the potential to aid objective identification of hypsarrhythmia and assessment of treatment efficacy to inform clinical decision-making
    corecore