2,760 research outputs found

    Free randomness can be amplified

    Full text link
    Are there fundamentally random processes in nature? Theoretical predictions, confirmed experimentally, such as the violation of Bell inequalities, point to an affirmative answer. However, these results are based on the assumption that measurement settings can be chosen freely at random, so assume the existence of perfectly free random processes from the outset. Here we consider a scenario in which this assumption is weakened and show that partially free random bits can be amplified to make arbitrarily free ones. More precisely, given a source of random bits whose correlation with other variables is below a certain threshold, we propose a procedure for generating fresh random bits that are virtually uncorrelated with all other variables. We also conjecture that such procedures exist for any non-trivial threshold. Our result is based solely on the no-signalling principle, which is necessary for the existence of free randomness.Comment: 5+7 pages, 2 figures. Updated to match published versio

    Evaluation of the London Measure of Unplanned Pregnancy in a United States population of women

    Get PDF
    Copyright @ 2012 Morof et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Objective: To evaluate the reliability and validity of the London Measure of Unplanned Pregnancy (a U.K.-developed measure of pregnancy intention), in English and Spanish translation, in a U.S. population of women. Methods: A psychometric evaluation study of the London Measure of Unplanned Pregnancy (LMUP), a six-item, self-completion paper measure was conducted with 346 women aged 15–45 who presented to San Francisco General Hospital for termination of pregnancy or antenatal care. Analyses of the two language versions were carried out separately. Reliability (internal consistency) was assessed using Cronbach’s alpha and item-total correlations. Test-retest reliability (stability) was assessed using weighted Kappa. Construct validity was assessed using principal components analysis and hypothesis testing. Results: Psychometric testing demonstrated that the LMUP was reliable and valid in both U.S. English (alpha = 0.78, all item-total correlations .0.20, weighted Kappa = 0.72, unidimensionality confirmed, hypotheses met) and Spanish translation (alpha = 0.84, all item-total correlations .0.20, weighted Kappa = 0.77, unidimensionality confirmed, hypotheses met). Conclusion: The LMUP was reliable and valid in U.S. English and Spanish translation and therefore may now be used with U.S. women.The study was funded by an anonymous donation

    Macroscopically local correlations can violate information causality

    Full text link
    Although quantum mechanics is a very successful theory, its foundations are still a subject of intense debate. One of the main problems is the fact that quantum mechanics is based on abstract mathematical axioms, rather than on physical principles. Quantum information theory has recently provided new ideas from which one could obtain physical axioms constraining the resulting statistics one can obtain in experiments. Information causality and macroscopic locality are two principles recently proposed to solve this problem. However none of them were proven to define the set of correlations one can observe. In this paper, we present an extension of information causality and study its consequences. It is shown that the two above-mentioned principles are inequivalent: if the correlations allowed by nature were the ones satisfying macroscopic locality, information causality would be violated. This gives more confidence in information causality as a physical principle defining the possible correlation allowed by nature.Comment: are welcome. 6 pages, 4 figs. This is the originally submitted version. The published version contains some bounds on quantum realizations of d2dd isotropic boxes (table 1), found by T. Vertesi, who kindly shared them with u

    Understanding pregnancy planning in a low-income country setting: validation of the London measure of unplanned pregnancy in Malawi

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: The London Measure of Unplanned Pregnancy (LMUP) is a new and psychometrically valid measure of pregnancy intention that was developed in the United Kingdom. An improved understanding of pregnancy intention in low-income countries, where unintended pregnancies are common and maternal and neonatal deaths are high, is necessary to inform policies to address the unmet need for family planning. To this end this research aimed to validate the LMUP for use in the Chichewa language in Malawi.Methods: Three Chichewa speakers translated the LMUP and one translation was agreed which was back-translated and pre-tested on five pregnant women using cognitive interviews. The measure was field tested with pregnant women who were recruited at antenatal clinics and data were analysed using classical test theory and hypothesis testing.Results: 125 women aged 15-43 (median 23), with parities of 1-8 (median 2) completed the Chichewa LMUP. There were no missing data. The full range of LMUP scores was captured. In terms of reliability, the scale was internally consistent (Cronbach's alpha = 0.78) and test-retest data from 70 women showed good stability (weighted Kappa 0.80). In terms of validity, hypothesis testing confirmed that unmarried women (p = 0.003), women who had four or more children alive (p = 0.0051) and women who were below 20 or over 29 (p = 0.0115) were all more likely to have unintended pregnancies. Principal component analysis showed that five of the six items loaded onto one factor, with a further item borderline. A sensitivity analysis to assess the effect of the removal of the weakest item of the scale showed slightly improved performance but as the LMUP was not significantly adversely affected by its inclusion we recommend retaining the six-item score.Conclusion: The Chichewa LMUP is a valid and reliable measure of pregnancy intention in Malawi and can now be used in research and/or surveillance. This is the first validation of this tool in a low-income country, helping to demonstrate that the concept of pregnancy planning is applicable in such a setting. Use of the Chichewa LMUP can enhance our understanding of pregnancy intention in Malawi, giving insight into the family planning services that are required to better meet women's needs and save lives. © 2013 Hall et al.; licensee BioMed Central Ltd.Dr Hall’s Wellcome Trust Research Training Fellowship, grant number 097268/Z/11/Z

    Comparing the impact of environmental conditions and microphysics on the forecast uncertainty of deep convective clouds and hail

    Get PDF
    Severe hailstorms have the potential to damage buildings and crops. However, important processes for the prediction of hailstorms are insufficiently represented in operational weather forecast models. Therefore, our goal is to identify model input parameters describing environmental conditions and cloud microphysics, such as the vertical wind shear and strength of ice multiplication, which lead to large uncertainties in the prediction of deep convective clouds and precipitation. We conduct a comprehensive sensitivity analysis simulating deep convective clouds in an idealized setup of a cloud-resolving model. We use statistical emulation and variance-based sensitivity analysis to enable a Monte Carlo sampling of the model outputs across the multi-dimensional parameter space. The results show that the model dynamical and microphysical properties are sensitive to both the environmental and microphysical uncertainties in the model. The microphysical parameters lead to larger uncertainties in the output of integrated hydrometeor mass contents and precipitation variables. In particular, the uncertainty in the fall velocities of graupel and hail account for more than 65 % of the variance of all considered precipitation variables and for 30 %–90 % of the variance of the integrated hydrometeor mass contents. In contrast, variations in the environmental parameters – the range of which is limited to represent model uncertainty – mainly affect the vertical profiles of the diabatic heating rates

    Effects of glucose and lactate on <em>Streptococcus </em><em>mutans </em>abundance in a novel multispecies oral biofilm model

    Get PDF
    The oral microbiome plays an important role in protecting oral health. Here, we established a controlled mixed-species in vitro biofilm model and used it to assess the impact of glucose and lactate on the ability of Streptococcus mutans, an acidogenic and aciduric species, to compete with commensal oral bacteria. A chemically defined medium was developed that supported the growth of S. mutans and four common early colonizers of dental plaque: Streptococcus gordonii, Actinomyces oris, Neisseria subflava, and Veillonella parvula. Biofilms containing the early colonizers were developed in a continuous flow bioreactor, exposed to S. mutans, and incubated for up to 7 days. The abundance of bacteria was estimated by quantitative polymerase chain reaction (qPCR). At high glucose and high lactate, the pH in bulk fluid rapidly decreased to approximately 5.2, and S. mutans outgrew other species in biofilms. In low glucose and high lactate, the pH remained above 5.5, and V. parvula was the most abundant species in biofilms. By contrast, in low glucose and low lactate, the pH remained above 6.0 throughout the experiment, and the microbial community in biofilms was relatively balanced. Fluorescence in situ hybridization confirmed that all species were present in the biofilm and the majority of cells were viable using live/dead staining. These data demonstrate that carbon source concentration is critical for microbial homeostasis in model oral biofilms. Furthermore, we established an experimental system that can support the development of computational models to predict transitions to microbial dysbiosis based on metabolic interactions. 38376204</strong

    Quantum networks reveal quantum nonlocality

    Full text link
    The results of local measurements on some composite quantum systems cannot be reproduced classically. This impossibility, known as quantum nonlocality, represents a milestone in the foundations of quantum theory. Quantum nonlocality is also a valuable resource for information processing tasks, e.g. quantum communication, quantum key distribution, quantum state estimation, or randomness extraction. Still, deciding if a quantum state is nonlocal remains a challenging problem. Here we introduce a novel approach to this question: we study the nonlocal properties of quantum states when distributed and measured in networks. Using our framework, we show how any one-way entanglement distillable state leads to nonlocal correlations. Then, we prove that nonlocality is a non-additive resource, which can be activated. There exist states, local at the single-copy level, that become nonlocal when taking several copies of it. Our results imply that the nonlocality of quantum states strongly depends on the measurement context.Comment: 4 + 3 pages, 4 figure

    Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km

    Get PDF
    For more than 80 years, the counterintuitive predictions of quantum theory have stimulated debate about the nature of reality. In his seminal work, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory. Bell showed that in any local realist theory the correlations between distant measurements satisfy an inequality and, moreover, that this inequality can be violated according to quantum theory. This provided a recipe for experimental tests of the fundamental principles underlying the laws of nature. In the past decades, numerous ingenious Bell inequality tests have been reported. However, because of experimental limitations, all experiments to date required additional assumptions to obtain a contradiction with local realism, resulting in loopholes. Here we report on a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell's inequality. We employ an event-ready scheme that enables the generation of high-fidelity entanglement between distant electron spins. Efficient spin readout avoids the fair sampling assumption (detection loophole), while the use of fast random basis selection and readout combined with a spatial separation of 1.3 km ensure the required locality conditions. We perform 245 trials testing the CHSH-Bell inequality S2S \leq 2 and find S=2.42±0.20S = 2.42 \pm 0.20. A null hypothesis test yields a probability of p=0.039p = 0.039 that a local-realist model for space-like separated sites produces data with a violation at least as large as observed, even when allowing for memory in the devices. This result rules out large classes of local realist theories, and paves the way for implementing device-independent quantum-secure communication and randomness certification.Comment: Raw data will be made available after publicatio

    A violation of the uncertainty principle implies a violation of the second law of thermodynamics

    Full text link
    Uncertainty relations state that there exist certain incompatible measurements, to which the outcomes cannot be simultaneously predicted. While the exact incompatibility of quantum measurements dictated by such uncertainty relations can be inferred from the mathematical formalism of quantum theory, the question remains whether there is any more fundamental reason for the uncertainty relations to have this exact form. What, if any, would be the operational consequences if we were able to go beyond any of these uncertainty relations? We give a strong argument that justifies uncertainty relations in quantum theory by showing that violating them implies that it is also possible to violate the second law of thermodynamics. More precisely, we show that violating the uncertainty relations in quantum mechanics leads to a thermodynamic cycle with positive net work gain, which is very unlikely to exist in nature.Comment: 8 pages, revte
    corecore