22,975 research outputs found

    Hawking Radiation of Dirac Particles in an Arbitrarily Accelerating Kinnersley Black Hole

    Get PDF
    Quantum thermal effect of Dirac particles in an arbitrarily accelerating Kinnersley black hole is investigated by using the method of generalized tortoise coordinate transformation. Both the location and the temperature of the event horizon depend on the advanced time and the angles. The Hawking thermal radiation spectrum of Dirac particles contains a new term which represents the interaction between particles with spin and black holes with acceleration. This spin-acceleration coupling effect is absent from the thermal radiation spectrum of scalar particles.Comment: Revtex, 12pt, 16 pages, no figure, to appear in Gen. Rel. Grav. 34 (2002) N0.

    Monolithic millimeter-wave diode grid frequency multiplier arrays

    Get PDF
    Monolithic diode frequency multiplier arrays, including barrier-N-N(+) (BNN) doubler, multi-quantum-barrier-varactor (MQBV) tripler, Schottky-quantum-barrier-varactor (SQBV) tripler, and resonant-tunneling-diode (RTD) tripler arrays, have been successfully fabricated with yields between 85 and 99 percent. Frequency doubling and/or tripling have been observed for all the arrays. Output powers of 2.4-2.6 W (eta = 10-18 percent) at 66 GHz with the BNN doubler and 3.8-10 W (eta = 1.7-4 percent) at 99 GHz with the SQBV tripler have been achieved

    Monolithic millimeter-wave diode array beam controllers: Theory and experiment

    Get PDF
    In the current work, multi-function beam control arrays have been fabricated and have successfully demonstrated amplitude control of transmitted beams in the W and D bands (75-170 GHz). While these arrays are designed to provide beam control under DC bias operation, new designs for high-speed electronic and optical control are under development. These arrays will fill a need for high-speed watt-level beam switches in pulsed reflectometer systems under development for magnetic fusion plasma diagnostics. A second experimental accomplishment of the current work is the demonstration in the 100-170 GHz (D band) frequency range of a new technique for the measurement of the transmission phase as well as amplitude. Transmission data can serve as a means to extract ('de-embed') the grid parameters; phase information provides more complete data to assist in this process. Additional functions of the array beam controller yet to be tested include electronically controlled steering and focusing of a reflected beam. These have application in the areas of millimeter-wave electronic scanning radar and reflectometry, respectively

    Multilayer MIM inversion of AEM data: Theory and field example

    Get PDF
    This paper presents a multilayer generalization of an algebraic method of inverting frequency-doma in airborne active electromagnetic (AEM) data in terms of 1-D layered earth models. The processing of the AEM data, which includes a recalibration procedure, is also outlined. The inversion is applied to synthetic fields generated from a multilayer model which is intended to approximate a measured conductivity profile of the water column in the Gulf of Mexico and to measured AEM data from a survey of the Barataria Bay estuary region of the Louisiana Gulf of Mexico coast. The inversion results from the synthetic data are in good agreement with the forward model. The conductivities calculated from the inversions of measured AEM data are compared to ground-and water-based measurements. The depth variations of the calculated electrical conductivities in the nearshore Gulf waters are in good agreement with measurements of conductivity versus depth by conductivity-temperature-depth (CTD) casts at several points on the over-the-water portion of two flight lines. ©2001 Society of Exploration Geophysicist

    Radiating black holes in Einstein-Yang-Mills theory and cosmic censorship

    Full text link
    Exact nonstatic spherically symmetric black-hole solution of the higher dimensional Einstein-Yang-Mills equations for a null dust with Yang-Mills gauge charge are obtained by employing Wu-Yang \textit{ansatz}, namely, HD-EYM Vaidya solution. It is interesting to note that gravitational contribution of YM gauge charge for this ansatz is indeed opposite (attractive rather than repulsive) that of Maxwell charge. It turns out that the gravitational collapse of null dust with YM gauge charge admit strong curvature shell focusing naked singularities violating cosmic censorship. However, there is significant shrinkage of the initial data space for a naked singularity of the HD-Vaidya collapse due to presence of YM gauge charge. The effect of YM gauge charge on structure and location of the apparent and event horizons is also discussed.Comment: 9 RevTeX pages, 1 figur

    Casimir energy and black hole pair creation in Schwarzschild-de Sitter spacetime

    Get PDF
    Following the subtraction procedure for manifolds with boundaries, we calculate by variational methods, the Schwarzschild-de Sitter and the de Sitter space energy difference. By computing the one loop approximation for TT tensors we discover the existence of an unstable mode even for the non-degenerate case. This result seems to be in agreement with the sub-maximal black hole pair creation of Bousso-Hawking. The instability can be eliminated by the boundary reduction method. Implications on a foam-like space are discussed.Comment: 19 pages,RevTeX with package epsf and four eps figures. Added other references. Accepted for publication in Classical and Quantum Gravit

    Free field realization of the exceptional current superalgebra \hat{D(2,1;\a)}_k

    Full text link
    The free-field representations of the D(2,1;\a) current superalgebra and the corresponding energy-momentum tensor are constructed. The related screening currents of the first kind are also presented.Comment: Latex file, 10 page
    • …
    corecore