3,164 research outputs found

    TMEM97 and PGRMC1 do not mediate sigma-2 ligand-induced cell death

    Get PDF
    Abstract Sigma-2 receptors have been implicated in both tumor proliferation and neurodegenerative diseases. Recently the sigma-2 receptor was identified as transmembrane protein 97 (TMEM97). Progesterone receptor membrane component 1 (PGRMC1) was also recently reported to form a complex with TMEM97 and the low density lipoprotein (LDL) receptor, and this trimeric complex is responsible for the rapid internalization of LDL. Sigma-2 receptor ligands with various structures have been shown to induce cell death in cancer cells. In the current study, we examined the role of TMEM97 and PGRMC1 in mediating sigma-2 ligand-induced cell death. Cell viability and caspase-3 assays were performed in control, TMEM97 knockout (KO), PGRMC1 KO, and TMEM97/PGRMC1 double KO cell lines treated with several sigma-2 ligands. The data showed that knockout of TMEM97, PGRMC1, or both did not affect the concentrations of sigma-2 ligands that induced 50% of cell death (EC50), suggesting that cytotoxic effects of these compounds are not mediated by TMEM97 or PGRMC1. Sigma-1 receptor ligands, (+)-pentazocine and NE-100, did not block sigma-2 ligand cytotoxicity, suggesting that sigma-1 receptor was not responsible for sigma-2 ligand cytotoxicity. We also examined whether the alternative, residual binding site (RBS) of 1,3-Di-o-tolylguanidine (DTG) could be responsible for sigma-2 ligand cytotoxicity. Our data showed that the binding affinities (K i) of sigma-2 ligands on the DTG RBS did not correlate with the cytotoxicity potency (EC50) of these ligands, suggesting that the DTG RBS was not fully responsible for sigma-2 ligand cytotoxicity. In addition, we showed that knocking out TMEM97, PGRMC1, or both reduced the initial internalization rate of a sigma-2 fluorescent ligand, SW120. However, concentrations of internalized SW120 became identical later in the control and knockout cells. These data suggest that the initial internalization process of sigma-2 ligands does not appear to mediate the cell-killing effect of sigma-2 ligands. In summary, we have provided evidence that sigma-2 receptor/TMEM97 and PGRMC1 do not mediate sigma-2 ligand cytotoxicity. Our work will facilitate elucidating mechanisms of sigma-2 ligand cytotoxicity

    Transplanted Olfactory Ensheathing Cells Reduce Retinal Degeneration in Royal College of Surgeons Rats

    Get PDF
    PURPOSE OF THE STUDY: Retinitis pigmentosa (RP) is a group of genetic disorders and a slow loss of vision that is caused by a cascade of retinal degenerative events. We examined whether these retinal degenerative events were reduced after cultured mixtures of adult olfactory ensheathing cells (OECs) and olfactory nerve fibroblasts (ONFs) were transplanted into the subretinal space of 1-month-old RCS rat, a classic model of RP. MATERIALS AND METHODS: The changes in retinal photoreceptors and Müller cells of RCS rats after cell transplantation were observed by the expression of recoverin and glial fibrillary acidic protein (GFAP), counting peanut agglutinin (PNA)-positive cone outer segments and calculating the relative apoptotic area. The retinal function was also evaluated by Flash electroretinography (ERG). To further investigate the mechanisms, by which OECs/ONFs play important roles in the transplanted retinas, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and basic fibroblast growth factor (bFGF) secretion of the cultured cells were analyzed by ELISA. The ability of OECs/ONFs to ingest porcine retinal outer segments and the amount of phagocytosis were compared with retinal pigment epithelium (RPE) cells. RESULTS: Our research showed that the transplantation of OECs/ONFs mixtures restored recoverin expression, protected retinal outer segments, increased PNA-positive cone outer segments, reduced caspase-positive apoptotic figures, downregulated GFAP, and maintained the b-wave of the ERG. Cultured OECs/ONFs expressed and secreted NGF, BDNF, and bFGF which made contributions to assist survival of the photoreceptors. An in vitro phagocytosis assay showed that OECs, but not ONFs, phagocytosed porcine retinal outer segments, and the phagocytic ability of OECs was even superior to that of RPE cells. CONCLUSIONS: These findings demonstrate that transplantation of OECs/ONFs cleaned up the accumulated debris in subretinal space, and provided an intrinsic continuous supply of neurotrophic factors. It suggested that transplantation of OECs/ONFs might be a possible future route for protection of the retina and reducing retinal degeneration in RP

    Ferroelectricity driven-resistive switching and Schottky barrier modulation at CoPt/MgZnO interface for non-volatile memories

    Full text link
    Ferroelectric memristors have attracted much attention as a type of nonvolatile resistance switching memories in neuromorphic computing, image recognition, and information storage. Their resistance switching mechanisms have been studied several times in perovskite and complicated materials systems. It was interpreted as the modulation of carrier transport by polarization control over Schottky barriers. Here, we experimentally report the isothermal resistive switching across a CoPt/MgZnO Schottky barrier using a simple binary semiconductor. The crystal and texture properties showed high-quality and single-crystal Co0.30_{0.30}Pt0.70_{0.70}/Mg0.20_{0.20}Zn0.80_{0.80}O hetero-junctions. The resistive switching was examined by an electric-field cooling method that exhibited a ferroelectric TC_C of MgZnO close to the bulk value. The resistive switching across CoPt/MgZnO Schottky barrier was accompanied by a change in the Schottky barrier height of 26.5 meV due to an interfacial charge increase and/or orbital hybridization induced reversal of MgZnO polarization. The magnitude of the reversed polarization was estimated to be a reasonable value of 3.0 (8.25) μ\mu C/cm2^2 at 300 K (2 K). These findings demonstrated the utilities of CoPt/MgZnO interface as a potential candidate for ferroelectric memristors and can be extended to probe the resistive switching of other hexagonal ferroelectric materials

    Structure-based Design of Broadly Neutralizing HCV Antibody and Vaccine

    Get PDF
    Hepatitis C virus (HCV) chronically infects nearly 200 million people worldwide. Antibodies have the potential to prevent establishment of chronic HCV infection in individuals exposed to the virus. Several broadly neutralizing monoclonal antibodies capable of binding HCV surface glycoproteins have been identified, including HCV1 identified by MassBiologics at UMMS, which targets a highly conserved linear epitope. We utilized the recently solved structure of the HCV1-bound epitope to identify regions of the antibody that could be modified to potentially improve binding to a mutation (N415K) which facilitates escape from neutralization. Based on systematic in silico mutagenesis of HCV1 residues in the Rosetta protein modeling program, a number of single or double antibody mutants were selected for in vitro evaluation. The mutated antibodies were synthesized and their ability to neutralize HCV pseudoviruses expressing either wild-type epitope sequence or the N415K variant was evaluated. Antibodies with mutations on the heavy chain, R65Q and V50L, demonstrated improved neutralizing activity against the N415K escape mutant without impacting their ability to neutralize wild type virus. We also sought to design a novel HCV vaccine that could focus the response to a small conserved neutralizing epitope of the virus defined by HCV1. The HCV1 epitope structure was used to search a large dataset of known protein structures from the Protein Data Bank, resulting in designs of scaffolds that were predicted to stably accommodate the epitope. These epitope-presenting scaffold proteins have been made and will be screened in animal studies to determine their potential as vaccine candidates for HCV prevention

    Structure-Based Design of Hepatitis C Virus Vaccines That Elicit Neutralizing Antibody Responses to a Conserved Epitope

    Get PDF
    Despite recent advances in therapeutic options, hepatitis C virus (HCV) remains a severe global disease burden, and a vaccine can substantially reduce its incidence. Due to its extremely high sequence variability, HCV can readily escape the immune response; thus, an effective vaccine must target conserved, functionally important epitopes. Using the structure of a broadly neutralizing antibody in complex with a conserved linear epitope from the HCV E2 envelope glycoprotein (residues 412 to 423; epitope I), we performed structure-based design of immunogens to induce antibody responses to this epitope. This resulted in epitope-based immunogens based on a cyclic defensin protein, as well as a bivalent immunogen with two copies of the epitope on the E2 surface. We solved the X-ray structure of a cyclic immunogen in complex with the HCV1 antibody and confirmed preservation of the epitope conformation and the HCV1 interface. Mice vaccinated with our designed immunogens produced robust antibody responses to epitope I, and their serum could neutralize HCV. Notably, the cyclic designs induced greater epitope-specific responses and neutralization than the native peptide epitope. Beyond successfully designing several novel HCV immunogens, this study demonstrates the principle that neutralizing anti-HCV antibodies can be induced by epitope-based, engineered vaccines and provides the basis for further efforts in structure-based design of HCV vaccines. IMPORTANCE: Hepatitis C virus is a leading cause of liver disease and liver cancer, with approximately 3% of the world\u27s population infected. To combat this virus, an effective vaccine would have distinct advantages over current therapeutic options, yet experimental vaccines have not been successful to date, due in part to the virus\u27s high sequence variability leading to immune escape. In this study, we rationally designed several vaccine immunogens based on the structure of a conserved epitope that is the target of broadly neutralizing antibodies. In vivo results in mice indicated that these antigens elicited epitope-specific neutralizing antibodies, with various degrees of potency and breadth. These promising results suggest that a rational design approach can be used to generate an effective vaccine for this virus

    Developmental changes in the role of different metalinguistic awareness skills in Chinese reading acquisition from preschool to third grade

    Get PDF
    Copyright @ 2014 Wei et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The present study investigated the relationship between Chinese reading skills and metalinguistic awareness skills such as phonological, morphological, and orthographic awareness for 101 Preschool, 94 Grade-1, 98 Grade-2, and 98 Grade-3 children from two primary schools in Mainland China. The aim of the study was to examine how each of these metalinguistic awareness skills would exert their influence on the success of reading in Chinese with age. The results showed that all three metalinguistic awareness skills significantly predicted reading success. It further revealed that orthographic awareness played a dominant role in the early stages of reading acquisition, and its influence decreased with age, while the opposite was true for the contribution of morphological awareness. The results were in stark contrast with studies in English, where phonological awareness is typically shown as the single most potent metalinguistic awareness factor in literacy acquisition. In order to account for the current data, a three-stage model of reading acquisition in Chinese is discussed.National Natural Science Foundation of China and Knowledge Innovation Program of the Chinese Academy of Sciences

    Energy- and flux-budget (EFB) turbulence closure model for the stably stratified flows. Part I: Steady-state, homogeneous regimes

    Get PDF
    We propose a new turbulence closure model based on the budget equations for the key second moments: turbulent kinetic and potential energies: TKE and TPE (comprising the turbulent total energy: TTE = TKE + TPE) and vertical turbulent fluxes of momentum and buoyancy (proportional to potential temperature). Besides the concept of TTE, we take into account the non-gradient correction to the traditional buoyancy flux formulation. The proposed model grants the existence of turbulence at any gradient Richardson number, Ri. Instead of its critical value separating - as usually assumed - the turbulent and the laminar regimes, it reveals a transition interval, 0.1< Ri <1, which separates two regimes of essentially different nature but both turbulent: strong turbulence at Ri<<1; and weak turbulence, capable of transporting momentum but much less efficient in transporting heat, at Ri>1. Predictions from this model are consistent with available data from atmospheric and lab experiments, direct numerical simulation (DNS) and large-eddy simulation (LES).Comment: 40 pages, 6 figures, Boundary-layer Meteorology, resubmitted, revised versio

    The persistent dynamic secrets of senescence

    Get PDF
    While the beneficial versus detrimental implications of the senescence-associated secretome remain an issue of debate, time-resolved analyses of its composition, regulatory mechanisms and functional consequences have been largely missing. The dynamic activity of NOTCH is now shown to direct two distinct senescence phenotypes, by first promoting a pro-senescent TGF-{beta}1-dependent secretome, followed by a second wave of pro-inflammatory, senescence-clearing cytokines

    Negative pressure characteristics of an evaporating meniscus at nanoscale

    Get PDF
    This study aims at understanding the characteristics of negative liquid pressures at the nanoscale using molecular dynamics simulation. A nano-meniscus is formed by placing liquid argon on a platinum wall between two nano-channels filled with the same liquid. Evaporation is simulated in the meniscus by increasing the temperature of the platinum wall for two different cases. Non-evaporating films are obtained at the center of the meniscus. The liquid film in the non-evaporating and adjacent regions is found to be under high absolute negative pressures. Cavitation cannot occur in these regions as the capillary height is smaller than the critical cavitation radius. Factors which determine the critical film thickness for rupture are discussed. Thus, high negative liquid pressures can be stable at the nanoscale, and utilized to create passive pumping devices as well as significantly enhance heat transfer rates
    corecore