592 research outputs found
Study of effects of fuel properties in turbine-powered business aircraft
Increased interest in research and technology concerning aviation turbine fuels and their properties was prompted by recent changes in the supply and demand situation of these fuels. The most obvious change is the rapid increase in fuel price. For commercial airplanes, fuel costs now approach 50 percent of the direct operating costs. In addition, there were occasional local supply disruptions and gradual shifts in delivered values of certain fuel properties. Dwindling petroleum reserves and the politically sensitive nature of the major world suppliers make the continuation of these trends likely. A summary of the principal findings, and conclusions are presented. Much of the material, especially the tables and graphs, is considered in greater detail later. The economic analysis and examination of operational considerations are described. Because some of the assumptions on which the economic analysis is founded are not easily verified, the sensitivity of the analysis to alternates for these assumptions is examined. The data base on which the analyses are founded is defined in a set of appendices
Onset voltage shift due to non-zero Landau ground state level in coherent magnetotransport
Coherent electron transport in double-barrier heterostructures with parallel
electric and magnetic fields is analyzed theoretically and with the aid of a
quantum simulator accounting for 3-dimensional transport effects. The
onset-voltage shift induced by the magnetic field in resonant tunneling diodes,
which was previously attributed to the cyclotron frequency inside the
well is found to arise from an upward shift of the non-zero ground (lowest)
Landau state energy in the entire quantum region where coherent transport takes
place. The spatial dependence of the cyclotron frequency is accounted for and
verified to have a negligible impact on resonant tunneling for the device and
magnetic field strength considered. A correction term for the onset-voltage
shift arising from the magnetic field dependence of the chemical potential is
also derived. The Landau ground state with its nonvanishing finite harmonic
oscillator energy is verified however to be the principal
contributor to the onset voltage shift at low temperatures.Comment: 13 pages, and 3 figures. Accepted for publication in Phys. Rev.
Dual-gated bilayer graphene hot electron bolometer
Detection of infrared light is central to diverse applications in security,
medicine, astronomy, materials science, and biology. Often different materials
and detection mechanisms are employed to optimize performance in different
spectral ranges. Graphene is a unique material with strong, nearly
frequency-independent light-matter interaction from far infrared to
ultraviolet, with potential for broadband photonics applications. Moreover,
graphene's small electron-phonon coupling suggests that hot-electron effects
may be exploited at relatively high temperatures for fast and highly sensitive
detectors in which light energy heats only the small-specific-heat electronic
system. Here we demonstrate such a hot-electron bolometer using bilayer
graphene that is dual-gated to create a tunable bandgap and
electron-temperature-dependent conductivity. The measured large electron-phonon
heat resistance is in good agreement with theoretical estimates in magnitude
and temperature dependence, and enables our graphene bolometer operating at a
temperature of 5 K to have a low noise equivalent power (33 fW/Hz1/2). We
employ a pump-probe technique to directly measure the intrinsic speed of our
device, >1 GHz at 10 K.Comment: 5 figure
Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff
Compared to upland forests, riparian forest soils have greater potential to remove nitrate (NO3) from agricultural run-off through denitrification. It is unclear, however, whether prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of denitrification and its end products. This research assesses the rate of denitrification and nitrous oxide (N2O) emissions from riparian forest soils exposed to prolonged nutrient run-off from plant nurseries and compares these to similar forest soils not exposed to nutrient run-off. Nursery run-off also contains high levels of phosphate (PO4). Since there are conflicting reports on the impact of PO4 on the activity of denitrifying microbes, the impact of PO4 on such activity was also investigated. Bulk and intact soil cores were collected from N-exposed and non-exposed forests to determine denitrification and N2O emission rates, whereas denitrification potential was determined using soil slurries. Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 μg NO3-N g-1 soil, respectively. Net N2O emissions were 1.5 and 1.7 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 μg NO3-N g-1 soil amendment rates, respectively. Similarly, denitrification potential increased 17 times in response to addition of 15 μg NO3-N g-1 in soil slurries. The addition of PO4 (5 μg PO4–P g-1) to soil slurries and intact cores did not affect denitrification rates. These observations suggest that prolonged N loading did not affect the denitrification potential of the riparian forest soils; however, it did result in higher N2O emissions compared to emission rates from non-exposed forests
Simvastatin decreases the level of heparin-binding protein in patients with acute lung injury
Background: Heparin-binding protein is released by neutrophils during inflammation and disrupts the integrity of the alveolar and capillary endothelial barrier implicated in the development of acute lung injury and systemic organ failure. We sought to investigate whether oral administration of simvastatin to patients with acute lung injury reduces plasma heparin-binding protein levels and improves intensive care unit outcome. Methods: Blood samples were collected from patients with acute lung injury with 48 h of onset of acute lung injury (day 0), day 3, and day 7. Patients were given placebo or 80 mg simvastatin for up to 14 days. Plasma heparin-binding protein levels from patients with acute lung injury and healthy volunteers were measured by ELISA. Results: Levels of plasma heparin-binding protein were significantly higher in patients with acute lung injury than healthy volunteers on day 0 (p = 0.011). Simvastatin 80 mg administered enterally for 14 days reduced plasma level of heparin-binding protein in patients. Reduced heparin-binding protein was associated with improved intensive care unit survival. Conclusions: A reduction in heparin-binding protein with simvastatin is a potential mechanism by which the statin may modify outcome from acute lung injury
Electron quantum metamaterials in van der Waals heterostructures
In recent decades, scientists have developed the means to engineer synthetic
periodic arrays with feature sizes below the wavelength of light. When such
features are appropriately structured, electromagnetic radiation can be
manipulated in unusual ways, resulting in optical metamaterials whose function
is directly controlled through nanoscale structure. Nature, too, has adopted
such techniques -- for example in the unique coloring of butterfly wings -- to
manipulate photons as they propagate through nanoscale periodic assemblies. In
this Perspective, we highlight the intriguing potential of designer
sub-electron wavelength (as well as wavelength-scale) structuring of electronic
matter, which affords a new range of synthetic quantum metamaterials with
unconventional responses. Driven by experimental developments in stacking
atomically layered heterostructures -- e.g., mechanical pick-up/transfer
assembly -- atomic scale registrations and structures can be readily tuned over
distances smaller than characteristic electronic length-scales (such as
electron wavelength, screening length, and electron mean free path). Yet
electronic metamaterials promise far richer categories of behavior than those
found in conventional optical metamaterial technologies. This is because unlike
photons that scarcely interact with each other, electrons in subwavelength
structured metamaterials are charged, and strongly interact. As a result, an
enormous variety of emergent phenomena can be expected, and radically new
classes of interacting quantum metamaterials designed
The deuteron: structure and form factors
A brief review of the history of the discovery of the deuteron in provided.
The current status of both experiment and theory for the elastic electron
scattering is then presented.Comment: 80 pages, 33 figures, submited to Advances in Nuclear Physic
Lattice Boltzmann simulations of soft matter systems
This article concerns numerical simulations of the dynamics of particles
immersed in a continuum solvent. As prototypical systems, we consider colloidal
dispersions of spherical particles and solutions of uncharged polymers. After a
brief explanation of the concept of hydrodynamic interactions, we give a
general overview over the various simulation methods that have been developed
to cope with the resulting computational problems. We then focus on the
approach we have developed, which couples a system of particles to a lattice
Boltzmann model representing the solvent degrees of freedom. The standard D3Q19
lattice Boltzmann model is derived and explained in depth, followed by a
detailed discussion of complementary methods for the coupling of solvent and
solute. Colloidal dispersions are best described in terms of extended particles
with appropriate boundary conditions at the surfaces, while particles with
internal degrees of freedom are easier to simulate as an arrangement of mass
points with frictional coupling to the solvent. In both cases, particular care
has been taken to simulate thermal fluctuations in a consistent way. The
usefulness of this methodology is illustrated by studies from our own research,
where the dynamics of colloidal and polymeric systems has been investigated in
both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures,
76 page
Integrins as therapeutic targets: lessons and opportunities.
The integrins are a large family of cell adhesion molecules that are essential for the regulation of cell growth and function. The identification of key roles for integrins in a diverse range of diseases, including cancer, infection, thrombosis and autoimmune disorders, has revealed their substantial potential as therapeutic targets. However, so far, pharmacological inhibitors for only three integrins have received marketing approval. This article discusses the structure and function of integrins, their roles in disease and the chequered history of the approved integrin antagonists. Recent advances in the understanding of integrin function, ligand interaction and signalling pathways suggest novel strategies for inhibiting integrin function that could help harness their full potential as therapeutic targets
The ecological and biogeochemical state of the North Pacifi c Subtropical Gyre is linked to sea surface height
Sea surface height (SSH) is routinely measured from satellites and used to infer ocean currents, including eddies, that affect the distribution of organisms and substances in the ocean. SSH not only reflects the dynamics of the surface layer, but also is sensitive to the fluctuations of the main pycnocline; thus it is linked to events of nutrient upwelling. Beyond episodic upwelling events, it is not clear if and how SSH is linked to broader changes in the biogeochemical state of marine ecosystems. Our analysis of 23 years of satellite observations and biogeochemical measurements from the North Pacific Subtropical Gyre shows that SSH is associated with numerous biogeochemical changes in distinct layers of the water column. From the sea surface to the depth of the chlorophyll maximum, dissolved phosphorus and nitrogen enigmatically increase with SSH, enhancing the abundance of heterotrophic picoplankton. At the deep chlorophyll maximum, increases in SSH are associated with decreases in vertical gradients of inorganic nutrients, decreases in the abundance of eukaryotic phytoplankton, and increases in the abundance of prokaryotic phytoplankton. In waters below ∼100 m depth, increases in SSH are associated with increases in organic matter and decreases in inorganic nutrients, consistent with predicted consequences of the vertical displacement of isopycnal layers. Our analysis highlights how satellite measurements of SSH can be used to infer the ecological and biogeochemical state of open-ocean ecosystems
- …
