38 research outputs found

    Long-Term Vegetation Change in Central Africa: The Need for an Integrated Management Framework for Forests and Savannas

    Full text link
    peer reviewedTropical forests and savannas are the main biomes in sub-Saharan Africa, covering most of the continent. Collectively they offer important habitat for biodiversity and provide multiple ecosystem services. Considering their global importance and the multiple sustainability challenges they face in the era of the Anthropocene, this chapter undertakes a comprehensive analysis of the past, present, and future vegetation patterns in central African forests and savannas. Past changes in climate, vegetation, land use, and human activity have affected the distribution of forests and savannas across central Africa. Currently, forests form a continuous block across the wet and moist areas of central Africa, and are characterized by high tree cover (>90% tree cover). Savannas and woodlands have lower tree cover (<40% tree cover), are found in drier sites in the north and south of the region, and are maintained by frequent fires. Recent tree cover loss (2000–2015) has been more important for forests than for savannas, which, however, reportedly experienced woody encroachment. Future cropland expansion is expected to have a strong impact on savannas, while the extent of climatic impacts depends on the actual scenario. We finally identify some of the policy implications for restoring ecosystems, expanding protected areas, and designing sustainable ecosystem management approaches in the region

    Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review

    Full text link

    The faunal role in the degradation of the common intertidal salt marsh plant Scirpus maritimus

    Get PDF
    Abstract The aim of this work was to evaluate the role of different environmental conditions (oxic and anoxic), and the presence of macrofauna and/or meiofauna during the different steps of Scirpus maritimus L. decomposition/mineralization under controlled laboratory conditions. The results showed no significant differences between the anaerobic and the aerobic degradation of plant material, under the presence of bacteria or meiofauna. Nevertheless, under anoxic conditions sediment mineralization was enhanced, with an increase concentration of phosphorus and ammonium in the water phase. Concerning the presence of fauna, results show that, although bacterial activity was responsible for 70% of the S. maritimus leaves degradation, the presence of macrofauna together with meiofauna enhanced the leaves mineralization up to 90%. Moreover, the presence of macrofauna together with meiofauna significantly affected the decomposition of phosphorus and of nitrogen, as well as the leaves lesser labile structural parts, by increasing the mineralization of plant carbon, and raised the nutrient turnover within the system.The present study reinforces the functional link between fauna levels on the nutrient dynamics in salt marshes ecosystems, namely at the vegetation detritus/water column interface
    corecore