289 research outputs found

    ciliaFA : a research tool for automated, high-throughput measurement of ciliary beat frequency using freely available software

    Get PDF
    Background: Analysis of ciliary function for assessment of patients suspected of primary ciliary dyskinesia (PCD) and for research studies of respiratory and ependymal cilia requires assessment of both ciliary beat pattern and beat frequency. While direct measurement of beat frequency from high-speed video recordings is the most accurate and reproducible technique it is extremely time consuming. The aim of this study was to develop a freely available automated method of ciliary beat frequency analysis from digital video (AVI) files that runs on open-source software (ImageJ) coupled to Microsoft Excel, and to validate this by comparison to the direct measuring high-speed video recordings of respiratory and ependymal cilia. These models allowed comparison to cilia beating between 3 and 52 Hz. Methods: Digital video files of motile ciliated ependymal (frequency range 34 to 52 Hz) and respiratory epithelial cells (frequency 3 to 18 Hz) were captured using a high-speed digital video recorder. To cover the range above between 18 and 37 Hz the frequency of ependymal cilia were slowed by the addition of the pneumococcal toxin pneumolysin. Measurements made directly by timing a given number of individual ciliary beat cycles were compared with those obtained using the automated ciliaFA system. Results: The overall mean difference (± SD) between the ciliaFA and direct measurement high-speed digital imaging methods was −0.05 ± 1.25 Hz, the correlation coefficient was shown to be 0.991 and the Bland-Altman limits of agreement were from −1.99 to 1.49 Hz for respiratory and from −2.55 to 3.25 Hz for ependymal cilia. Conclusions: A plugin for ImageJ was developed that extracts pixel intensities and performs fast Fourier transformation (FFT) using Microsoft Excel. The ciliaFA software allowed automated, high throughput measurement of respiratory and ependymal ciliary beat frequency (range 3 to 52 Hz) and avoids operator error due to selection bias. We have included free access to the ciliaFA plugin and installation instructions in Additional file 1 accompanying this manuscript that other researchers may use

    Physical Education Pedagogies Built upon Theories of Movement Learning: How Can Environmental Constraints Be Manipulated to Improve Children’s Executive Function and Self-Regulation Skills?

    Get PDF
    Physical education in schools has been marginalised across the globe, and as a result, children are missing out on opportunities to develop and acquire the foundation skills needed to lead a physically active life. The squeeze on physical education in schools, particularly in some western countries (United Kingdom, Australia and America), has been justified on the grounds that core subjects such as English and mathematics need more curriculum time, as this will lead to higher cognitive and academic performance. The aim of this paper is to highlight how physical education lessons in early childhood, underpinned by either of two major theories of motor learning, can support teachers in the creation of learning environments, as well as guide their pedagogical practice to facilitate children’s development of key cognitive skills, in particular executive function and self-regulation skills. These skills are crucial for learning and development and have been found to be a higher predictor of academic achievement than IQ. They also enable positive behaviour and allow us to make healthy choices for ourselves and others, therefore providing further evidence that the development of movement skills has the potential to secure positive attitudes and outcomes towards physical activity across the lifespan

    Single-nucleotide polymorphism associations with preterm delivery: a case-control replication study and meta-analysis

    Get PDF
    BackgroundThe aim of this study was to replicate single-nucleotide polymorphism (SNP) associations with preterm birth (PTB; birth at MethodsSpontaneous PTB cases and controls were selected from an existing cohort. Candidate SNPs were taken from an existing genotype panel. A systematic review was conducted for each SNP in the panel to determine suitability as a PTB candidate. Those with significant associations previously reported in Caucasians were selected for replication. Candidate SNPs were already genotyped in cases and controls and clinical data were accessed from state perinatal and cerebral palsy databases. Association analysis was conducted between each SNP and PTB, and meta-analysis was conducted if there were ≥ 3 studies in the literature. Maternal and fetal SNPs were considered as separate candidates.ResultsA cohort of 170 cases and 583 controls was formed. Eight SNPs from the original panel of genotyped SNPs were selected as PTB candidates and for replication on the basis of systematic literature review results. In our cohort, fetal factor V Leiden (FVL) was significantly associated with PTB (odds ratio (OR): 2.6, 95% confidence interval (CI): 1.31-5.17), and meta-analysis confirmed this association (OR: 2.71, 95% CI: 1.15-6.4).ConclusionReplication and meta-analysis support an increased risk of PTB in Caucasians with the fetal FVL mutation.Michael E. O’Callaghan, Alastair H. MacLennan, Gai L. McMichael, Eric A. Haan and Gustaaf A. Dekke

    3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings

    Get PDF
    RATIONALE: 3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug. In animals, high-dose administration of MDMA produces deficits in serotonin (5-HT) neurons (e.g., depletion of forebrain 5-HT) that have been interpreted as neurotoxicity. Whether such 5-HT deficits reflect neuronal damage is a matter of ongoing debate. OBJECTIVE: The present paper reviews four specific issues related to the hypothesis of MDMA neurotoxicity in rats: (1) the effects of MDMA on monoamine neurons, (2) the use of “interspecies scaling” to adjust MDMA doses across species, (3) the effects of MDMA on established markers of neuronal damage, and (4) functional impairments associated with MDMA-induced 5-HT depletions. RESULTS: MDMA is a substrate for monoamine transporters, and stimulated release of 5-HT, NE, and DA mediates effects of the drug. MDMA produces neurochemical, endocrine, and behavioral actions in rats and humans at equivalent doses (e.g., 1–2 mg/kg), suggesting that there is no reason to adjust doses between these species. Typical doses of MDMA causing long-term 5-HT depletions in rats (e.g., 10–20 mg/kg) do not reliably increase markers of neurotoxic damage such as cell death, silver staining, or reactive gliosis. MDMA-induced 5-HT depletions are accompanied by a number of functional consequences including reductions in evoked 5-HT release and changes in hormone secretion. Perhaps more importantly, administration of MDMA to rats induces persistent anxiety-like behaviors in the absence of measurable 5-HT deficits. CONCLUSIONS: MDMA-induced 5-HT depletions are not necessarily synonymous with neurotoxic damage. However, doses of MDMA which do not cause long-term 5-HT depletions can have protracted effects on behavior, suggesting even moderate doses of the drug may pose risks

    Rare copy number variation in cerebral palsy

    Get PDF
    As per publisher: published online 22 May 2013Recent studies have established the role of rare copy number variants (CNVs) in several neurological disorders but the contribution of rare CNVs to cerebral palsy (CP) is not known. Fifty Caucasian families having children with CP were studied using two microarray designs. Potentially pathogenic, rare (<1% population frequency) CNVs were identified, and their frequency determined, by comparing the CNVs found in cases with 8329 adult controls with no known neurological disorders. Ten of the 50 cases (20%) had rare CNVs of potential relevance to CP; there were a total of 14 CNVs, which were observed in <0.1% (<8/8329) of the control population. Eight inherited from an unaffected mother: a 751-kb deletion including FSCB, a 1.5-Mb duplication of 7q21.13, a 534-kb duplication of 15q11.2, a 446-kb duplication including CTNND2, a 219-kb duplication including MCPH1, a 169-kb duplication of 22q13.33, a 64-kb duplication of MC2R, and a 135-bp exonic deletion of SLC06A1. Three inherited from an unaffected father: a 386-kb deletion of 12p12.2-p12.1, a 234-kb duplication of 10q26.13, and a 4-kb exonic deletion of COPS3. The inheritance was unknown for three CNVs: a 157-bp exonic deletion of ACOX1, a 693-kb duplication of 17q25.3, and a 265-kb duplication of DAAM1. This is the first systematic study of CNVs in CP, and although it did not identify de novo mutations, has shown inherited, rare CNVs involving potentially pathogenic genes and pathways requiring further investigation.Gai McMichael, Santhosh Girirajan, Andres Moreno-De-Luca, Jozef Gecz, Chloe Shard, Lam Son Nguyen, Jillian Nicholl, Catherine Gibson, Eric Haan, Evan Eichler, Christa Lese Martin and Alastair MacLenna

    Quantification of the Temporal Evolution of Collagen Orientation in Mechanically Conditioned Engineered Cardiovascular Tissues

    Get PDF
    Load-bearing soft tissues predominantly consist of collagen and exhibit anisotropic, non-linear visco-elastic behavior, coupled to the organization of the collagen fibers. Mimicking native mechanical behavior forms a major goal in cardiovascular tissue engineering. Engineered tissues often lack properly organized collagen and consequently do not meet in vivo mechanical demands. To improve collagen architecture and mechanical properties, mechanical stimulation of the tissue during in vitro tissue growth is crucial. This study describes the evolution of collagen fiber orientation with culture time in engineered tissue constructs in response to mechanical loading. To achieve this, a novel technique for the quantification of collagen fiber orientation is used, based on 3D vital imaging using multiphoton microscopy combined with image analysis. The engineered tissue constructs consisted of cell-seeded biodegradable rectangular scaffolds, which were either constrained or intermittently strained in longitudinal direction. Collagen fiber orientation analyses revealed that mechanical loading induced collagen alignment. The alignment shifted from oblique at the surface of the construct towards parallel to the straining direction in deeper tissue layers. Most importantly, intermittent straining improved and accelerated the alignment of the collagen fibers, as compared to constraining the constructs. Both the method and the results are relevant to create and monitor load-bearing tissues with an organized anisotropic collagen network

    Adult reversal of cognitive phenotypes in neurodevelopmental disorders

    Get PDF
    Recent findings in mice suggest that it is possible to reverse certain neurodevelopmental disorders in adults. Changes in development, previously thought to be irreparable in adults, were believed to underlie the neurological and psychiatric phenotypes of a range of common mental health problems with a clear developmental component. As a consequence, most researchers have focused their efforts on understanding the molecular and cellular processes that alter development with the hope that early intervention could prevent the emergent pathology. Unexpectedly, several different animal model studies published recently, including animal models of autism, suggest that it may be possible to reverse neurodevelopmental disorders in adults: Addressing the underlying molecular and cellular deficits in adults could in several cases dramatically improve the neurocognitive phenotypes in these animal models. The findings reviewed here provide hope to millions of individuals afflicted with a wide range of neurodevelopmental disorders, including autism, since they suggest that it may be possible to treat or even cure them in adults

    Optical Imaging of Bacterial Infections

    Get PDF
    The rise in multidrug resistant (MDR) bacteria has become a global crisis. Rapid and accurate diagnosis of infection will facilitate antibiotic stewardship and preserve our ability to treat and cure patients from bacterial infection. Direct in situ imaging of bacteria offers the prospect of accurately diagnosing disease and monitoring patient outcomes and response to treatment in real-time. There have been many recent advances in the field of optical imaging of infection; namely in specific probe and fluorophore design. This combined with the advances in imaging device technology render direct optical imaging of infection a feasible approach for accurate diagnosis in the clinic. Despite this, there are currently no licensed molecular probes for clinical optical imaging of infection. Here we report some of the most promising and interesting probes and approaches under development for this purpose, which have been evaluated in in vivo models within the laboratory setting

    Selective Vulnerability in Striosomes and in the Nigrostriatal Dopaminergic Pathway After Methamphetamine Administration: Early Loss of TH in Striosomes After Methamphetamine

    Get PDF
    Methamphetamine (METH), a commonly abused psychostimulant, causes dopamine neurotoxicity in humans, rodents, and nonhuman primates. This study examined the selective neuroanatomical pattern of dopaminergic neurotoxicity induced by METH in the mouse striatum. We examined the effect of METH on tyrosine hydroxylase (TH) and dopamine transporter (DAT) immunoreactivity in the different compartments of the striatum and in the nucleus accumbens. The levels of dopamine and its metabolites, 3,4-dihidroxyphenylacetic acid and homovanillic acid, as well as serotonin (5-HT) and its metabolite, 5-hydroxyindolacetic acid, were also quantified in the striatum. Mice were given three injections of METH (4 mg/kg, i.p.) at 3 h intervals and sacrificed 7 days later. This repeated METH injection induced a hyperthermic response and a decrease in striatal concentrations of dopamine and its metabolites without affecting 5-HT concentrations. In addition, the drug caused a reduction in TH- and DAT-immunoreactivity when compared to saline-treated animals. Interestingly, there was a significantly greater loss of TH- and DAT-immunoreactivity in striosomes than in the matrix. The predominant loss of dopaminergic terminals in the striosomes occurred along the rostrocaudal axis of the striatum. In contrast, METH did not decrease TH- or DAT-immunoreactivity in the nucleus accumbens. These results provide the first evidence that compartments of the mouse striatum, striosomes and matrix, and mesolimbic and nigrostriatal pathways have different vulnerability to METH. This pattern is similar to that observed with other neurotoxins such as MPTP, the most widely used model of Parkinson’s disease, in early Huntington’s disease and hypoxic/ischemic injury, suggesting that these conditions might share mechanisms of neurotoxicity
    corecore