37 research outputs found

    Ξ²-Adrenoreceptor Stimulation Mediates Reconsolidation of Social Reward-Related Memories

    Get PDF
    In recent years, the notion that consolidated memories become transiently unstable after retrieval and require reconsolidation to persist for later use has received strong experimental support. To date, the majority of studies on reconsolidation have focused on memories of negative emotions, while the dynamics of positive memories have been less well studied. Social play, the most characteristic social behavior displayed by young mammals, is important for social and cognitive development. It has strong rewarding properties, illustrated by the fact that it can induce conditioned place preference (CPP). In order to understand the dynamics of positive social memories, we evaluated the effect of propranolol, a Ξ²-adrenoreceptor antagonist known to influence a variety of memory processes, on acquisition, consolidation, retrieval and reconsolidation of social play-induced CPP in adolescent rats.Systemic treatment with propranolol, immediately before or after a CPP test (i.e. retrieval session), attenuated CPP 24 h later. Following extinction, CPP could be reinstated in saline--but not in propranolol-treated rats, indicating that propranolol treatment had persistently disrupted the CPP memory trace. Propranolol did not affect social play-induced CPP in the absence of memory retrieval or when administered 1 h or 6 h after retrieval. Furthermore, propranolol did not affect acquisition, consolidation or retrieval of social play-induced CPP.We conclude that Ξ²-adrenergic neurotransmission selectively mediates the reconsolidation, but not other processes involved in the storage and stability of social reward-related memories in adolescent rats. These data support the notion that consolidation and reconsolidation of social reward-related memories in adolescent rats rely on distinct neural mechanisms

    Repeated Labilization-Reconsolidation Processes Strengthen Declarative Memory in Humans

    Get PDF
    The idea that memories are immutable after consolidation has been challenged. Several reports have shown that after the presentation of a specific reminder, reactivated old memories become labile and again susceptible to amnesic agents. Such vulnerability diminishes with the progress of time and implies a re-stabilization phase, usually referred to as reconsolidation. To date, the main findings describe the mechanisms associated with the labilization-reconsolidation process, but little is known about its functionality from a biological standpoint. Indeed, two functions have been proposed. One suggests that destabilization of the original memory after the reminder allows the integration of new information into the background of the original memory (memory updating), and the other suggests that the labilization-reconsolidation process strengthens the original memory (memory strengthening). We have previously reported the reconsolidation of human declarative memories, demonstrating memory updating in the framework of reconsolidation. Here we deal with the strengthening function attributed to the reconsolidation process. We triggered labilization-reconsolidation processes successively by repeated presentations of the proper reminder. Participants learned an association between five cue-syllables and their respective response-syllables. Twenty-four hours later, the paired-associate verbal memory was labilized by exposing the subjects to one, two or four reminders. The List-memory was evaluated on Day 3 showing that the memory was improved when at least a second reminder was presented in the time window of the first labilization-reconsolidation process prompted by the earlier reminder. However, the improvement effect was revealed on Day 3, only when at least two reminders were presented on Day2 and not as a consequence of only retrieval. Therefore, we propose central concepts for the reconsolidation process, emphasizing its biological role and the parametrical constrains for this function to be operative

    A Mismatch-Based Model for Memory Reconsolidation and Extinction in Attractor Networks

    Get PDF
    The processes of memory reconsolidation and extinction have received increasing attention in recent experimental research, as their potential clinical applications begin to be uncovered. A number of studies suggest that amnestic drugs injected after reexposure to a learning context can disrupt either of the two processes, depending on the behavioral protocol employed. Hypothesizing that reconsolidation represents updating of a memory trace in the hippocampus, while extinction represents formation of a new trace, we have built a neural network model in which either simple retrieval, reconsolidation or extinction of a stored attractor can occur upon contextual reexposure, depending on the similarity between the representations of the original learning and reexposure sessions. This is achieved by assuming that independent mechanisms mediate Hebbian-like synaptic strengthening and mismatch-driven labilization of synaptic changes, with protein synthesis inhibition preferentially affecting the former. Our framework provides a unified mechanistic explanation for experimental data showing (a) the effect of reexposure duration on the occurrence of reconsolidation or extinction and (b) the requirement of memory updating during reexposure to drive reconsolidation

    Amphetamine-induced taste aversion learning in young and old F-344 rats following exposure to 56Fe particles

    No full text
    Exposure to 56Fe particles produces changes in dopaminergic function and in dopamine-dependent behaviors, including amphetamine-induced conditioned taste aversion (CTA) learning. Because many of these changes are characteristic of the changes that accompany the aging process, the present study was designed to determine whether or not there would be an interaction between age and exposure to 56Fe particles in the disruption of an amphetamine-induced CTA. One hundred and forty F-344 male rats 2-, 7-, 12-, and 16-months old, were radiated with 56Fe particles (0.25–2.00Β Gy, 1Β GeV/n) at Brookhaven National Laboratory. Three days following irradiation, the rats were tested for the effects of radiation on the acquisition of a CTA produced by injection of amphetamine (3Β mg/kg, i.p.). The main effect of age was to produce a significant decrease in conditioning day sucrose intake; there was no affect of age on the acquisition of the amphetamine-induced CTA. Exposing rats to 56Fe particles disrupted the acquisition of the CTA produced by injection of amphetamine only in the 2-month-old rats. These results do not support the hypothesis of an interaction between age and exposure to 56Fe particles in producing a disruption of amphetamine-induced CTA learning. As such, these results suggest that the aging produced by exposure to 56Fe particles may be endpoint specific

    An electroconvulsive therapy procedure impairs reconsolidation of episodic memories in humans

    No full text
    Item does not contain fulltextDespite accumulating evidence for a reconsolidation process in animals, support in humans, especially for episodic memory, is limited. Using a within-subjects manipulation, we found that a single application of electroconvulsive therapy following memory reactivation in patients with unipolar depression disrupted reactivated, but not non-reactivated, memories for an emotional episode in a time-dependent manner. Our results provide evidence for reconsolidation of emotional episodic memories in humans.3 p
    corecore