6 research outputs found

    Ecosystem Resilience and Threshold Response in the Galápagos Coastal Zone

    Get PDF
    Background: The Intergovernmental Panel on Climate Change (IPCC) provides a conservative estimate on rates of sea-level rise of 3.8 mm yr⁻¹ at the end of the 21st century, which may have a detrimental effect on ecologically important mangrove ecosystems. Understanding factors influencing the long-term resilience of these communities is critical but poorly understood. We investigate ecological resilience in a coastal mangrove community from the Galápagos Islands over the last 2700 years using three research questions: What are the 'fast and slow' processes operating in the coastal zone? Is there evidence for a threshold response? How can the past inform us about the resilience of the modern system?Methodology/Principal Findings: Palaeoecological methods (AMS radiocarbon dating, stable carbon isotopes (δ13C)) were used to reconstruct sedimentation rates and ecological change over the past 2,700 years at Diablas lagoon, Isabela, Galápagos. Bulk geochemical analysis was also used to determine local environmental changes, and salinity was reconstructed using a diatom transfer function. Changes in relative sea level (RSL) were estimated using a glacio-isostatic adjustment model. Non-linear behaviour was observed in the Diablas mangrove ecosystem as it responded to increased salinities following exposure to tidal inundations. A negative feedback was observed which enabled the mangrove canopy to accrete vertically, but disturbances may have opened up the canopy and contributed to an erosion of resilience over time. A combination of drier climatic conditions and a slight fall in RSL then resulted in a threshold response, from a mangrove community to a microbial mat.Conclusions/Significance: Palaeoecological records can provide important information on the nature of non-linear behaviour by identifying thresholds within ecological systems, and in outlining responses to 'fast and slow' environmental change between alternative stable states. This study highlights the need to incorporate a long-term ecological perspective when designing strategies for maximizing coastal resilience.</p

    Developing atom probe tomography of phyllosilicates in preparation for extra-terrestrial sample return

    No full text
    Hydrous phyllosilicate minerals, including the serpentine subgroup, are likely to be major constituents of material that will be bought back to Earth by missions to Mars and to primitive asteroids Ryugu and Bennu. Small quantities (< 60 g) of micrometre-sized, internally heterogeneous material will be available for study, requiring minimally destructive techniques. Many conventional methods are unsuitable for phyllosilicates as they are typically finely crystalline and electron beam-sensitive resulting in amorphisation and dehydration. New tools will be required for nanoscale characterisation of these precious extra-terrestrial samples. Here we test the effectiveness of atom probe tomography (APT) for this purpose. Using lizardite from the Ronda peridotite, Spain, as a terrestrial analogue, we outline an effective analytical protocol to extract nanoscale chemical and structural measurements of phyllosilicates. The potential of APT is demonstrated by the unexpected finding that the Ronda lizardite contains SiO-rich nanophases, consistent with opaline silica that formed as a by-product of the serpentinisation of olivine. Our new APT approach unlocks previously unobservable nanominerals and nanostructures within phyllosilicates owing to resolution limitations of more established imaging techniques. APT will provide unique insights into the processes and products of water/rock interaction on Earth, Mars and primitive asteroids

    Clinical Problems in Injured Athletes

    No full text
    corecore