310 research outputs found

    Method for fiberizing ceramic materials Patent

    Get PDF
    Process for fiberizing ceramic materials with high fusion temperatures and tensile strengt

    Topological crystalline insulator states in Pb(1-x)Sn(x)Se

    Full text link
    Topological insulators are a novel class of quantum materials in which time-reversal symmetry, relativistic (spin-orbit) effects and an inverted band structure result in electronic metallic states on the surfaces of bulk crystals. These helical states exhibit a Dirac-like energy dispersion across the bulk bandgap, and they are topologically protected. Recent theoretical proposals have suggested the existence of topological crystalline insulators, a novel class of topological insulators in which crystalline symmetry replaces the role of time-reversal symmetry in topological protection [1,2]. In this study, we show that the narrow-gap semiconductor Pb(1-x)Sn(x)Se is a topological crystalline insulator for x=0.23. Temperature-dependent magnetotransport measurements and angle-resolved photoelectron spectroscopy demonstrate that the material undergoes a temperature-driven topological phase transition from a trivial insulator to a topological crystalline insulator. These experimental findings add a new class to the family of topological insulators. We expect these results to be the beginning of both a considerable body of additional research on topological crystalline insulators as well as detailed studies of topological phase transitions.Comment: v2: published revised manuscript (6 pages, 3 figures) and supplementary information (5 pages, 8 figures

    Substrate texture properties induce triatomine probing on bitten warm surfaces

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this work we initially evaluated whether the biting process of <it>Rhodnius prolixus </it>relies on the detection of mechanical properties of the substrate. A linear thermal source was used to simulate the presence of a blood vessel under the skin of a host. This apparatus consisted of an aluminium plate and a nickel-chrome wire, both thermostatized and presented at 33 and 36°C, respectively. To evaluate whether mechanical properties of the substrate affect the biting behaviour of bugs, this apparatus was covered by a latex membrane. Additionally, we evaluated whether the expression of probing depends on the integration of bilateral thermal inputs from the antennae.</p> <p>Results</p> <p>The presence of a latex cover on a thermal source induced a change in the biting pattern shown by bugs. In fact, with latex covered sources it was possible to observe long bites that were never performed in response to warm metal surfaces. The total number of bites was higher in intact versus unilaterally antennectomized insects. These bites were significantly longer in intact than in unilaterally antennectomized insects.</p> <p>Conclusions</p> <p>Our results suggest that substrate recognition by simultaneous input through thermal and mechanical modalities is required for triggering maxillary probing activity.</p

    Seasonal changes in patterns of gene expression in avian song control brain regions.

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Photoperiod and hormonal cues drive dramatic seasonal changes in structure and function of the avian song control system. Little is known, however, about the patterns of gene expression associated with seasonal changes. Here we address this issue by altering the hormonal and photoperiodic conditions in seasonally-breeding Gambel's white-crowned sparrows and extracting RNA from the telencephalic song control nuclei HVC and RA across multiple time points that capture different stages of growth and regression. We chose HVC and RA because while both nuclei change in volume across seasons, the cellular mechanisms underlying these changes differ. We thus hypothesized that different genes would be expressed between HVC and RA. We tested this by using the extracted RNA to perform a cDNA microarray hybridization developed by the SoNG initiative. We then validated these results using qRT-PCR. We found that 363 genes varied by more than 1.5 fold (>log(2) 0.585) in expression in HVC and/or RA. Supporting our hypothesis, only 59 of these 363 genes were found to vary in both nuclei, while 132 gene expression changes were HVC specific and 172 were RA specific. We then assigned many of these genes to functional categories relevant to the different mechanisms underlying seasonal change in HVC and RA, including neurogenesis, apoptosis, cell growth, dendrite arborization and axonal growth, angiogenesis, endocrinology, growth factors, and electrophysiology. This revealed categorical differences in the kinds of genes regulated in HVC and RA. These results show that different molecular programs underlie seasonal changes in HVC and RA, and that gene expression is time specific across different reproductive conditions. Our results provide insights into the complex molecular pathways that underlie adult neural plasticity

    PCR reveals significantly higher rates of Trypanosoma cruzi infection than microscopy in the Chagas vector, Triatoma infestans: High rates found in Chuquisaca, Bolivia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Andean valleys of Bolivia are the only reported location of sylvatic <it>Triatoma infestans</it>, the main vector of Chagas disease in this country, and the high human prevalence of <it>Trypanosoma cruzi </it>infection in this region is hypothesized to result from the ability of vectors to persist in domestic, peri-domestic, and sylvatic environments. Determination of the rate of <it>Trypanosoma </it>infection in its triatomine vectors is an important element in programs directed at reducing human infections. Traditionally, <it>T. cruzi </it>has been detected in insect vectors by direct microscopic examination of extruded feces, or dissection and analysis of the entire bug. Although this technique has proven to be useful, several drawbacks related to its sensitivity especially in the case of small instars and applicability to large numbers of insects and dead specimens have motivated researchers to look for a molecular assay based on the polymerase chain reaction (PCR) as an alternative for parasitic detection of <it>T. cruzi </it>infection in vectors. In the work presented here, we have compared a PCR assay and direct microscopic observation for diagnosis of <it>T. cruzi </it>infection in <it>T. infestans </it>collected in the field from five localities and four habitats in Chuquisaca, Bolivia. The efficacy of the methods was compared across nymphal stages, localities and habitats.</p> <p>Methods</p> <p>We examined 152 nymph and adult <it>T. infestans </it>collected from rural areas in the department of Chuquisaca, Bolivia. For microscopic observation, a few drops of rectal content obtained by abdominal extrusion were diluted with saline solution and compressed between a slide and a cover slip. The presence of motile parasites in 50 microscopic fields was registered using 400× magnification. For the molecular analysis, dissection of the posterior part of the abdomen of each insect followed by DNA extraction and PCR amplification was performed using the TCZ1 (5' – CGA GCT CTT GCC CAC ACG GGT GCT – 3') and TCZ2 (5' – CCT CCA AGC AGC GGA TAG TTC AGG – 3') primers. Amplicons were chromatographed on a 2% agarose gel with a 100 bp size standard, stained with ethidium bromide and viewed with UV fluorescence.</p> <p>For both the microscopy and PCR assays, we calculated sensitivity (number of positives by a method divided by the number of positives by either method) and discrepancy (one method was negative and the other was positive) at the locality, life stage and habitat level. The degree of agreement between PCR and microscopy was determined by calculating Kappa (<it>k</it>) values with 95% confidence intervals.</p> <p>Results</p> <p>We observed a high prevalence of <it>T. cruzi </it>infection in <it>T. infestans </it>(81.16% by PCR and 56.52% by microscopy) and discovered that PCR is significantly more sensitive than microscopic observation. The overall degree of agreement between the two methods was moderate (Kappa = 0.43 ± 0.07). The level of infection is significantly different among communities; however, prevalence was similar among habitats and life stages.</p> <p>Conclusion</p> <p>PCR was significantly more sensitive than microscopy in all habitats, developmental stages and localities in Chuquisaca, Bolivia. Overall we observed a high prevalence of <it>T. cruzi </it>infection in <it>T. infestans </it>in this area of Bolivia; however, microscopy underestimated infection at all levels examined.</p
    corecore