6,958 research outputs found

    Large Graph Analysis in the GMine System

    Full text link
    Current applications have produced graphs on the order of hundreds of thousands of nodes and millions of edges. To take advantage of such graphs, one must be able to find patterns, outliers and communities. These tasks are better performed in an interactive environment, where human expertise can guide the process. For large graphs, though, there are some challenges: the excessive processing requirements are prohibitive, and drawing hundred-thousand nodes results in cluttered images hard to comprehend. To cope with these problems, we propose an innovative framework suited for any kind of tree-like graph visual design. GMine integrates (a) a representation for graphs organized as hierarchies of partitions - the concepts of SuperGraph and Graph-Tree; and (b) a graph summarization methodology - CEPS. Our graph representation deals with the problem of tracing the connection aspects of a graph hierarchy with sub linear complexity, allowing one to grasp the neighborhood of a single node or of a group of nodes in a single click. As a proof of concept, the visual environment of GMine is instantiated as a system in which large graphs can be investigated globally and locally

    Simulation of Surface Runoff and Channel Flows Using a 2D Numerical Model

    Get PDF
    Numerical simulation of surface runoff is used to understand and predict watershed sediment transport and water quality and improve management of agricultural watersheds. However, models currently available are either simplified or parameterized for efficiency. In this chapter, CCHE2D, a physically based hydrodynamic model for general free surface flow hydrodynamics, was applied to study watershed surface runoff and channel flows. Multiple analytical solutions and experimental data were used to verify and validate this finite element model systematically with good results. A numerical scheme for correcting the bilinear interpolation of the water surface elevation solutions from the cell centers to the computational nodes was developed to improve the model. The correction was found necessary and effective for the sheet runoff simulations over the irregular bed topography. The modified numerical model was then used to simulate storms in a low-relief agricultural watershed in the Mississippi River alluvial plain. This physically based model identified the channel networks, watershed boundary automatically, and helped to develop rating curves at the gage station of this complex watershed. The numerical simulations resolved detailed runoff and turbulent channel flows, which can be used for soil erosion and gully development analyses

    Stowage Planning with Optimal Ballast Water

    Get PDF

    An Adaptive Optics Survey of Stellar Variability at the Galactic Center

    Get PDF
    We present a ≈11.5\approx 11.5 year adaptive optics (AO) study of stellar variability and search for eclipsing binaries in the central ∼0.4\sim 0.4 pc (∼10′′\sim 10'') of the Milky Way nuclear star cluster. We measure the photometry of 563 stars using the Keck II NIRC2 imager (K′K'-band, λ0=2.124 μm\lambda_0 = 2.124 \text{ } \mu \text{m}). We achieve a photometric uncertainty floor of ΔmK′∼0.03\Delta m_{K'} \sim 0.03 (≈3%\approx 3\%), comparable to the highest precision achieved in other AO studies. Approximately half of our sample (50±2%50 \pm 2 \%) shows variability. 52±5%52 \pm 5\% of known early-type young stars and 43±4%43 \pm 4 \% of known late-type giants are variable. These variability fractions are higher than those of other young, massive star populations or late-type giants in globular clusters, and can be largely explained by two factors. First, our experiment time baseline is sensitive to long-term intrinsic stellar variability. Second, the proper motion of stars behind spatial inhomogeneities in the foreground extinction screen can lead to variability. We recover the two known Galactic center eclipsing binary systems: IRS 16SW and S4-258 (E60). We constrain the Galactic center eclipsing binary fraction of known early-type stars to be at least 2.4±1.7%2.4 \pm 1.7\%. We find no evidence of an eclipsing binary among the young S-stars nor among the young stellar disk members. These results are consistent with the local OB eclipsing binary fraction. We identify a new periodic variable, S2-36, with a 39.43 day period. Further observations are necessary to determine the nature of this source.Comment: 69 pages, 28 figures, 12 tables. Accepted for publication in The Astrophysical Journa

    Relativistically parameterized extended Huckel calculations. 10. Lanthanide trihalides

    Full text link
    The REX relativistically parameterized extended Huckel method is used to study the electronic structure of lanthanide trihalide molecules. All valence orbitals are described in terms of double-zeta Slater functions, with the atomic orbital parameters being determined by a least-squares fitting to published relativistic (Dirac- Fock) radial densities. Comparisons of orbital energies to experimental values are made and various trends are discussed. Ab initio all-electron calculations at the self-consistent field level and as a function of molecular geometry are reported for LaH3, LaF3, and LaCl3. While LaH3 and LaF3 are calculated to be pyramidal, LaCl3 is calculated to be planar.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26052/1/0000126.pd

    Numerical simulation of sediment related processes in water quality model

    Get PDF
    Proceedings of the Seventh International Conference on Hydroscience and Engineering, Philadelphia, PA, September 2006. http://hdl.handle.net/1860/732Sediment is a major nonpoint-source pollutant, and the exchange of materials between water and sediment is an important component of the lake eutrophication process. Suspended sediment increases water surface reflectivity and light attenuation in the water column. Nutrients can be absorbed to sediment particles and desorb from sediment to the water. In addition, nutrients can also be released from bed sediment. In this study, a water quality model, CCHE3D_WQ, was applied to simulate the concentrations of phytoplankton and nutrients in a shallow, natural lake with special emphasis on sediment-related processes. A formula was generated from field measurements to calculate the light attenuation coefficient using the concentration of chlorophyll and suspended sediment. The concentrations of adsorbed and dissolved nutrients due to adsorption-desorption were calculated using two formulas derived based on the Langmuir Equation. The release rates of nutrients from the lake bed were calculated by considering the effects of the concentration gradient across the water-sediment interface, pH, temperature, dissolved oxygen concentration, and flow conditions. Model algorithms describing the adsorption and desorption of nutrients from sediment particles as well as their release from bed sediment were tested using laboratory experimental data. Model simulation results show that there are strong interactions between sediment-related processes and nutrient concentrations

    Designing the Host-Guest Properties of Tetranuclear Arene Ruthenium Metalla-Rectangles to Accommodate a Pyrene Molecule

    Get PDF
    Cationic tetranuclear arene ruthenium complexes of the general formula [Ru4(p-cymene)4(N∩N)2(dhnq)2]4+ comprising rectangular structures are obtained in methanol from the reaction of the dinuclear arene ruthenium precursor [Ru2(p-cymene)2(dhnq)2Cl2] (dhnq = 5,8-dihydroxy-1,4-naphthoquinonato) with pyrazine or bipyridine linkers [N∩N = pyrazine, 1; 4,4-bipyridine, 2; 1,2-bis(4-pyridyl)ethylene, 3] in the presence of AgCF3SO3. All complexes 1-3, isolated in good yield as triflate salts, have been characterised by NMR and IR spectroscopy. The interaction of these rectangular complexes with pyrene as a guest molecule has been studied in solution by various NMR techniques (1D, DOSY, ROESY). In [D3]acetonitrile, the pyrazine-containing metalla-rectangle 1 shows no meaningful interactions with pyrene. On the other hand, the 4,4-bipyridine- and 1,2-bis(4-pyridyl)ethylene-containing metalla-rectangles 2 and 3 clearly interact with pyrene in [D3]acetonitrile. DOSY measurements suggest that, in the case of [Ru4p-cymene)4(4,4-bipyridine)2(dhnq)2]4+ (2), the interactions occur on the outside of the rectangular assembly, while in the case of [Ru4(p-cymene)4{1,2-bis(4-pyridyl)ethylene}2 (dhnq)2]4+ (3), the pyrene molecule is found inside the hydrophobic cavity of the metalla-rectangle, thus giving rise to a host-guest system
    • …
    corecore