65 research outputs found

    Predominant constitutive CFTR conductance in small airways

    Get PDF
    BACKGROUND: The pathological hallmarks of chronic obstructive pulmonary disease (COPD) are inflammation of the small airways (bronchiolitis) and destruction of lung parenchyma (emphysema). These forms of disease arise from chronic prolonged infections, which are usually never present in the normal lung. Despite the fact that primary hygiene and defense of the airways presumably requires a well controlled fluid environment on the surface of the bronchiolar airway, very little is known of the fluid and electrolyte transport properties of airways of less than a few mm diameter. METHODS: We introduce a novel approach to examine some of these properties in a preparation of minimally traumatized porcine bronchioles of about 1 mm diameter by microperfusing the intact bronchiole. RESULTS: In bilateral isotonic NaCl Ringer solutions, the spontaneous transepithelial potential (TEP; lumen to bath) of the bronchiole was small (mean ± sem: -3 ± 1 mV; n = 25), but when gluconate replaced luminal Cl(-), the bionic Cl(- )diffusion potentials (-58 ± 3 mV; n = 25) were as large as -90 mV. TEP diffusion potentials from 2:1 NaCl dilution showed that epithelial Cl(- )permeability was at least 5 times greater than Na(+ )permeability. The anion selectivity sequence was similar to that of CFTR. The bionic TEP became more electronegative with stimulation by luminal forskolin (5 μM)+IBMX (100 μM), ATP (100 μM), or adenosine (100 μM), but not by ionomycin. The TEP was partially inhibited by NPPB (100 μM), GlyH-101* (5–50 μM), and CFTR(Inh)-172* (5 μM). RT-PCR gave identifying products for CFTR, α-, β-, and γ-ENaC and NKCC1. Antibodies to CFTR localized specifically to the epithelial cells lining the lumen of the small airways. CONCLUSION: These results indicate that the small airway of the pig is characterized by a constitutively active Cl(- )conductance that is most likely due to CFTR

    Balloon therapy of critical aortic stenosis in the neonate. The therapeutic conundrum resolved?

    No full text

    Exercise testing in children before and after surgical treatment of aortic stenosis.

    No full text

    The evaluation of environmental alterations by thermal loading and acid pollution in the cooling reservoir of a steam-electric station

    No full text
    Related publications: "Possibilities for Beneficial Use of Heated Water Discharges into Cooling Reservoirs" by Robert S. Campbell, Arthur Witt, Jr., James R. Whitley. 1970. 5th Annual Water Resources Research Conference, Washington, D.C., p. 57-64. 5 talks were also presented. Students supported: 5 Master's Students were drafted. Students who received training include 3 B.S. Students, 5 Master's Students and 2 Ph.D. StudentsThomas Hill Reservoir was built in 1966 by the Associated Electric Cooperative to provide cooling water for a team electric plant. The reservoir was formed by damming the middle fork of the Chariton River. It is located 15 miles northwest of Moberly, Missouri (R15W and R16W, T55N and T56N). Statistics pertaining to the reservoir and the steam electric plant are listed in Table 1. Our investigations on Thomas Hill were initiated June, 1968, and continue at the time of this report.Project # A-020-MO Agreement # 14-01-0001-1845 & 302
    corecore