299 research outputs found
High star formation rates as the origin of turbulence in early and modern disk galaxies
High spatial and spectral resolution observations of star formation and
kinematics in early galaxies have shown that two-thirds are massive rotating
disk galaxies with the remainder being less massive non-rotating objects. The
line of sight averaged velocity dispersions are typically five times higher
than in today's disk galaxies. This has suggested that
gravitationally-unstable, gas-rich disks in the early Universe are fuelled by
cold, dense accreting gas flowing along cosmic filaments and penetrating hot
galactic gas halos. However these accreting flows have not been observed, and
cosmic accretion cannot power the observed level of turbulence. Here we report
on a new sample of rare high-velocity-dispersion disk galaxies we have
discovered in the nearby Universe where cold accretion is unlikely to drive
their high star-formation rates. We find that the velocity dispersion is most
fundamentally correlated with their star-formation rates, and not their mass
nor gas fraction, which leads to a new picture where star formation itself is
the energetic driver of galaxy disk turbulence at all cosmic epochs.Comment: 9 pages, 2 figures, Supplimentary Info available at:
http://pulsar.swin.edu.au/~agreen/nature/sigma_mean_arXiv.pdf. Accepted for
publication in Natur
Probing the lightest new gauge boson in the littlest Higgs model via the processes at the ILC
The neutral gauge boson with the mass of hundreds GeV, is the lightest
particle predicted by the littlest Higgs(LH) model, and such particle should be
the first signal of the LH model at the planed ILC if it exists indeed. In this
paper, we study some processes of the production associated with the
fermion pair at the ILC, i.e., . The studies
show that the most promising processes to detect among are , and they can
produce the sufficient signals in most parameter space preferred by the
electroweak precision data at the ILC. On the other hand, the signal produced
via the certain decay modes is typical and such signal can be easily
identified from the SM background. Therefore, , the lightest gauge boson
in the LH model would be detectable at the photon collider realized at the ILC.Comment: 12 pages, 4 figure
Weak Decays Beyond Leading Logarithms
We review the present status of QCD corrections to weak decays beyond the
leading logarithmic approximation including particle-antiparticle mixing and
rare and CP violating decays. After presenting the basic formalism for these
calculations we discuss in detail the effective hamiltonians for all decays for
which the next-to-leading corrections are known. Subsequently, we present the
phenomenological implications of these calculations. In particular we update
the values of various parameters and we incorporate new information on m_t in
view of the recent top quark discovery. One of the central issues in our review
are the theoretical uncertainties related to renormalization scale ambiguities
which are substantially reduced by including next-to-leading order corrections.
The impact of this theoretical improvement on the determination of the
Cabibbo-Kobayashi-Maskawa matrix is then illustrated in various cases.Comment: 229 pages, 32 PostScript figures (included); uses RevTeX, epsf.sty,
rotate.sty, rmpbib.sty (included), times.sty (included; requires LaTeX 2e);
complete PostScript version available at
ftp://feynman.t30.physik.tu-muenchen.de/pub/preprints/tum-100-95.ps.gz or
ftp://feynman.t30.physik.tu-muenchen.de/pub/preprints/tum-100-95.ps2.gz
(scaled down and rotated version to print two pages on one sheet of paper
Gravitational waves from single neutron stars: an advanced detector era survey
With the doors beginning to swing open on the new gravitational wave
astronomy, this review provides an up-to-date survey of the most important
physical mechanisms that could lead to emission of potentially detectable
gravitational radiation from isolated and accreting neutron stars. In
particular we discuss the gravitational wave-driven instability and
asteroseismology formalism of the f- and r-modes, the different ways that a
neutron star could form and sustain a non-axisymmetric quadrupolar "mountain"
deformation, the excitation of oscillations during magnetar flares and the
possible gravitational wave signature of pulsar glitches. We focus on progress
made in the recent years in each topic, make a fresh assessment of the
gravitational wave detectability of each mechanism and, finally, highlight key
problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and
Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor
corrections to match published versio
The stellar and sub-stellar IMF of simple and composite populations
The current knowledge on the stellar IMF is documented. It appears to become
top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr
pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing
metallicity and in increasingly massive early-type galaxies. It declines quite
steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars
having their own IMF. The most massive star of mass mmax formed in an embedded
cluster with stellar mass Mecl correlates strongly with Mecl being a result of
gravitation-driven but resource-limited growth and fragmentation induced
starvation. There is no convincing evidence whatsoever that massive stars do
form in isolation. Various methods of discretising a stellar population are
introduced: optimal sampling leads to a mass distribution that perfectly
represents the exact form of the desired IMF and the mmax-to-Mecl relation,
while random sampling results in statistical variations of the shape of the
IMF. The observed mmax-to-Mecl correlation and the small spread of IMF
power-law indices together suggest that optimally sampling the IMF may be the
more realistic description of star formation than random sampling from a
universal IMF with a constant upper mass limit. Composite populations on galaxy
scales, which are formed from many pc scale star formation events, need to be
described by the integrated galactic IMF. This IGIMF varies systematically from
top-light to top-heavy in dependence of galaxy type and star formation rate,
with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and
Galactic Structure, Vol.5, Springer. This revised version is consistent with
the published version and includes additional references and minor additions
to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
Simvastatin decreases the level of heparin-binding protein in patients with acute lung injury
Background: Heparin-binding protein is released by neutrophils during inflammation and disrupts the integrity of the alveolar and capillary endothelial barrier implicated in the development of acute lung injury and systemic organ failure. We sought to investigate whether oral administration of simvastatin to patients with acute lung injury reduces plasma heparin-binding protein levels and improves intensive care unit outcome. Methods: Blood samples were collected from patients with acute lung injury with 48 h of onset of acute lung injury (day 0), day 3, and day 7. Patients were given placebo or 80 mg simvastatin for up to 14 days. Plasma heparin-binding protein levels from patients with acute lung injury and healthy volunteers were measured by ELISA. Results: Levels of plasma heparin-binding protein were significantly higher in patients with acute lung injury than healthy volunteers on day 0 (p = 0.011). Simvastatin 80 mg administered enterally for 14 days reduced plasma level of heparin-binding protein in patients. Reduced heparin-binding protein was associated with improved intensive care unit survival. Conclusions: A reduction in heparin-binding protein with simvastatin is a potential mechanism by which the statin may modify outcome from acute lung injury
The s ---> d gamma decay in and beyond the Standard Model
The New Physics sensitivity of the s ---> d gamma transition and its
accessibility through hadronic processes are thoroughly investigated. Firstly,
the Standard Model predictions for the direct CP-violating observables in
radiative K decays are systematically improved. Besides, the magnetic
contribution to epsilon prime is estimated and found subleading, even in the
presence of New Physics, and a new strategy to resolve its electroweak versus
QCD penguin fraction is identified. Secondly, the signatures of a series of New
Physics scenarios, characterized as model-independently as possible in terms of
their underlying dynamics, are investigated by combining the information from
all the FCNC transitions in the s ---> d sector.Comment: 54 pages, 14 eps figure
Higgs Low-Energy Theorem (and its corrections) in Composite Models
The Higgs low-energy theorem gives a simple and elegant way to estimate the
couplings of the Higgs boson to massless gluons and photons induced by loops of
heavy particles. We extend this theorem to take into account possible nonlinear
Higgs interactions resulting from a strong dynamics at the origin of the
breaking of the electroweak symmetry. We show that, while it approximates with
an accuracy of order a few percents single Higgs production, it receives
corrections of order 50% for double Higgs production. A full one-loop
computation of the gg->hh cross section is explicitly performed in MCHM5, the
minimal composite Higgs model based on the SO(5)/SO(4) coset with the Standard
Model fermions embedded into the fundamental representation of SO(5). In
particular we take into account the contributions of all fermionic resonances,
which give sizeable (negative) corrections to the result obtained considering
only the Higgs nonlinearities. Constraints from electroweak precision and
flavor data on the top partners are analyzed in detail, as well as direct
searches at the LHC for these new fermions called to play a crucial role in the
electroweak symmetry breaking dynamics.Comment: 30 pages + appendices and references, 12 figures. v2: discussion of
flavor constraints improved; references added; electroweak fit updated,
results unchanged. Matches published versio
A comparative study between shielded and open coplanar waveguide discontinuities
A comparative study between open and shielded coplanar waveguide (CPW) discontinuities is presented. The space domain integral equation method is used to characterize several discontinuities such as the open-end CPW and CPW series stubs. Two different geometries of CPW series stubs (straight and bent stubs) are compared with respect to resonant frequency and radiation loss. In addition, the encountered radiation loss due to different CPW shunt stubs is evaluated experimentally. The notion of forced radiation simulation is presented, and the results of such a simulation are compared to the actual radiation loss obtained rigorously. It is shown that such a simulation cannot give reliable results concerning radiation loss from printed circuits
Breed and adaptive response modulate bovine peripheral blood cells’ transcriptome
Background: Adaptive response includes a variety of physiological modifications to face changes in external or internal conditions and adapt to a new situation. The acute phase proteins (APPs) are reactants synthesized against environmental stimuli like stress, infection, inflammation. Methods: To delineate the differences in molecular constituents of adaptive response to the environment we performed the whole-blood transcriptome analysis in Italian Holstein (IH) and Italian Simmental (IS) breeds. For this, 663 IH and IS cows from six commercial farms were clustered according to the blood level of APPs. Ten extreme individuals (five APP+ and APP- variants) from each farm were selected for the RNA-seq using the Illumina sequencing technology. Differentially expressed (DE) genes were analyzed using dynamic impact approach (DIA) and DAVID annotation clustering. Milk production data were statistically elaborated to assess the association of APP+ and APP- gene expression patterns with variations in milk parameters. Results: The overall de novo assembly of cDNA sequence data generated 13,665 genes expressed in bovine blood cells. Comparative genomic analysis revealed 1,152 DE genes in the comparison of all APP+ vs. all APP- variants; 531 and 217 DE genes specific for IH and IS comparison respectively. In all comparisons overexpressed genes were more represented than underexpressed ones. DAVID analysis revealed 369 DE genes across breeds, 173 and 73 DE genes in IH and IS comparison respectively. Among the most impacted pathways for both breeds were vitamin B6 metabolism, folate biosynthesis, nitrogen metabolism and linoleic acid metabolism. Conclusions: Both DIA and DAVID approaches produced a high number of significantly impacted genes and pathways with a narrow connection to adaptive response in cows with high level of blood APPs. A similar variation in gene expression and impacted pathways between APP+ and APP- variants was found between two studied breeds. Such similarity was also confirmed by annotation clustering of the DE genes. However, IH breed showed higher and more differentiated impacts compared to IS breed and such particular features in the IH adaptive response could be explained by its higher metabolic activity. Variations of milk production data were significantly associated with APP+ and APP- gene expression patterns
- …
