54 research outputs found

    Transient peak-strain matching partially recovers the age-impaired mechanoadaptive cortical bone response

    Get PDF
    Mechanoadaptation maintains bone mass and architecture; its failure underlies age-related decline in bone strength. It is unclear whether this is due to failure of osteocytes to sense strain, osteoblasts to form bone or insufficient mechanical stimulus. Mechanoadaptation can be restored to aged bone by surgical neurectomy, suggesting that changes in loading history can rescue mechanoadaptation. We use non-biased, whole-bone tibial analyses, along with characterisation of surface strains and ensuing mechanoadaptive responses in mice at a range of ages, to explore whether sufficient load magnitude can activate mechanoadaptation in aged bone. We find that younger mice adapt when imposed strains are lower than in mature and aged bone. Intriguingly, imposition of short-term, high magnitude loading effectively primes cortical but not trabecular bone of aged mice to respond. This response was regionally-matched to highest strains measured by digital image correlation and to osteocytic mechanoactivation. These data indicate that aged bone’s loading response can be partially recovered, non-invasively by transient, focal high strain regions. Our results indicate that old murine bone does respond to load when the loading is of sufficient magnitude, and bones’ age-related adaptation failure may be due to insufficient mechanical stimulus to trigger mechanoadaptation

    PAB3D: Its History in the Use of Turbulence Models in the Simulation of Jet and Nozzle Flows

    Get PDF
    This is a review paper for PAB3D s history in the implementation of turbulence models for simulating jet and nozzle flows. We describe different turbulence models used in the simulation of subsonic and supersonic jet and nozzle flows. The time-averaged simulations use modified linear or nonlinear two-equation models to account for supersonic flow as well as high temperature mixing. Two multiscale-type turbulence models are used for unsteady flow simulations. These models require modifications to the Reynolds Averaged Navier-Stokes (RANS) equations. The first scheme is a hybrid RANS/LES model utilizing the two-equation (k-epsilon) model with a RANS/LES transition function, dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier-Stokes (PANS) formulation. All of these models are implemented in the three-dimensional Navier-Stokes code PAB3D. This paper discusses computational methods, code implementation, computed results for a wide range of nozzle configurations at various operating conditions, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions

    Cartilage oligomeric matrix protein in idiopathic pulmonary fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a progressive and life threatening disease with median survival of 2.5-3 years. The IPF lung is characterized by abnormal lung remodeling, epithelial cell hyperplasia, myofibroblast foci formation, and extracellular matrix deposition. Analysis of gene expression microarray data revealed that cartilage oligomeric matrix protein (COMP), a non-collagenous extracellular matrix protein is among the most significantly up-regulated genes (Fold change 13, p-value <0.05) in IPF lungs. This finding was confirmed at the mRNA level by nCounter® expression analysis in additional 115 IPF lungs and 154 control lungs as well as at the protein level by western blot analysis. Immunohistochemical analysis revealed that COMP was expressed in dense fibrotic regions of IPF lungs and co-localized with vimentin and around pSMAD3 expressing cells. Stimulation of normal human lung fibroblasts with TGF-β1 induced an increase in COMP mRNA and protein expression. Silencing COMP in normal human lung fibroblasts significantly inhibited cell proliferation and negatively impacted the effects of TGF-β1 on COL1A1 and PAI1. COMP protein concentration measured by ELISA assay was significantly increased in serum of IPF patients compared to controls. Analysis of serum COMP concentrations in 23 patients who had prospective blood draws revealed that COMP levels increased in a time dependent fashion and correlated with declines in force vital capacity (FVC). Taken together, our results should encourage more research into the potential use of COMP as a biomarker for disease activity and TGF-β1 activity in patients with IPF. Hence, studies that explore modalities that affect COMP expression, alleviate extracellular matrix rigidity and lung restriction in IPF and interfere with the amplification of TGF-β1 signaling should be persuaded. © 2013 Vuga et al

    Multigene phylogeny of the Mustelidae: Resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adaptive radiation, the evolution of ecological and phenotypic diversity from a common ancestor, is a central concept in evolutionary biology and characterizes the evolutionary histories of many groups of organisms. One such group is the Mustelidae, the most species-rich family within the mammalian order Carnivora, encompassing 59 species classified into 22 genera. Extant mustelids display extensive ecomorphological diversity, with different lineages having evolved into an array of adaptive zones, from fossorial badgers to semi-aquatic otters. Mustelids are also widely distributed, with multiple genera found on different continents. As with other groups that have undergone adaptive radiation, resolving the phylogenetic history of mustelids presents a number of challenges because ecomorphological convergence may potentially confound morphologically based phylogenetic inferences, and because adaptive radiations often include one or more periods of rapid cladogenesis that require a large amount of data to resolve.</p> <p>Results</p> <p>We constructed a nearly complete generic-level phylogeny of the Mustelidae using a data matrix comprising 22 gene segments (~12,000 base pairs) analyzed with maximum parsimony, maximum likelihood and Bayesian inference methods. We show that mustelids are consistently resolved with high nodal support into four major clades and three monotypic lineages. Using Bayesian dating techniques, we provide evidence that mustelids underwent two bursts of diversification that coincide with major paleoenvironmental and biotic changes that occurred during the Neogene and correspond with similar bursts of cladogenesis in other vertebrate groups. Biogeographical analyses indicate that most of the extant diversity of mustelids originated in Eurasia and mustelids have colonized Africa, North America and South America on multiple occasions.</p> <p>Conclusion</p> <p>Combined with information from the fossil record, our phylogenetic and dating analyses suggest that mustelid diversification may have been spurred by a combination of faunal turnover events and diversification at lower trophic levels, ultimately caused by climatically driven environmental changes. Our biogeographic analyses show Eurasia as the center of origin of mustelid diversity and that mustelids in Africa, North America and South America have been assembled over time largely via dispersal, which has important implications for understanding the ecology of mustelid communities.</p

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Peripheral quantitative computed tomography (pQCT) for the assessment of bone strength in most of bone affecting conditions in developmental age: a review

    Full text link

    The Economic Effects of Unemployment Compensation

    No full text
    Program year: 1977-1978Digitized from print original stored in HDRThis paper has analyzed the experience rating feature of an unemployment compensation system. The question of how the costs of maintaining the unemployed are allocated was addressed. A review of the current literature found a lack of research on the impact of the UI tax structure on the economy. The problem of cost allocation was seen to lie in determining which output prices reflect these costs and thus determine how the market allocates resources. The model developed involves three steps. The first two of these; which are the perfectly competitive solution to compensating the unemployed and the solution imposed by a perfectly experience rated UI system, respectively; developed benchmarks to be compared to the third model, that of the UI system as it actually is. The primary conclusion of the model is that imperfect experience rating of the UI tax causes an interfirm subsidization of seasonal unemployment with resulting non-optimal allocation of resources among firms. The secondary, and empirically testable conclusion, is that the degree of experience rating of the UI tax is inversely related to a firm's layoff rate. The available data was tested using ordinary least squares methods. The regression results yielded inconclusive evidence to support the hypothesized relationship between tax rate ranges and layoff rates

    Epithelial-Myoepithelial Carcinoma of the Salivary Glands

    No full text
    Epithelial-myoepithelial carcinoma (EMC) is a rare neoplasm of the salivary glands. In this study, we aim to examine the demographic, clinicopathologic, and survival features of EMC using a population-based approach. Retrospective cohort study. The Surveillance, Epidemiology, and End Result (SEER) database (1973-2010) was queried for EMC of the major salivary glands. Data were analyzed with respect to various demographic and clinicopathologic factors. Survival was analyzed using the Kaplan-Meier and Cox proportional hazards models. In total, 246 cases were available for frequency analysis and 207 for survival analysis. Mean ± SD age at diagnosis was 63.8 ± 15.4 years. EMC affected females more frequently (57.3%). Distant metastases were present at diagnosis in only 4.5% of cases. Overall disease-specific survival (DSS) at 60, 120, and 180 months was 91.3%, 90.2%, and 80.7%, respectively. Patients with low-grade histology had significantly better survival at 180 months relative to those with high-grade tumors (90.6% vs 0.0%, P = .0246). When stratified by tumor size, patients with lesions >4 cm had the worst survival at 180 months (58.8%, P = .0003). All but 9 of the 207 cases available for survival analysis underwent surgery. A total of 85 patients (41.1%) received radiotherapy in addition to surgery. No survival benefit was noted for patients who received radiotherapy compared with those who did not (P = .4832). This report represents the largest series of EMC to date. Despite being regarded as a low-grade, indolent tumor, a significant fraction of our cohort underwent radiotherapy in addition to surgery, with no apparent added survival benefit
    corecore