21,821 research outputs found

    Investigation of the Surface Adhesion Phenomena and Mechanism of Gold-Plated Contacts at Superlow Making/Breaking Speed

    Get PDF
    Surface adhesion phenomena of gold-plated copper contact materials are studied in conditions of nonarc load (5/15/25 V and 0.2/0.5/1 A) and superlow speed (25 and 50 nm/s) realized by a piezoactuator during the making and breaking processes. It is shown that softening and melting of local asperities leads to interface adhesion, which results from the joule heat generated by the contact resistance; it is determined that the change of contact force with time obeys the negative exponential distribution and the time constant is associated with the adhesion force directly. Based on the fitting experimental data, the relationship between the adhesion force F z and the contact resistance R d while breaking can be expressed as F z ∝ R d -1 , which indicates that the main component of contact resistance is the bulk resistance of weld nugget and the constriction resistance is negligible

    Professor Jeremiah Jenks of Cornell University and the 1903 Chinese Monetary Reform

    Get PDF
    The Boxer uprising in China (1900) killed quite a number of foreigners and missionaries, which induced the armies of eight Western powers to invade China and they imposed an indemnity of 400 million silver taels. The international silver price around the 1900s was slumping, and these indemnity-treaty powers (e.g. France, UK, Germany, and Belgium) strongly wished China to establish a silver monetary system that would be maintained at parity with gold. Professor Jeremiah Jenks (1856-1929) of Cornell University was mandated to establish a gold-exchange standard for China. This paper begins with Jenks's life and work and the background of his mission to China. Section 2 presents the basic principle of this reform project and its specific designs. Section 3 assesses reactions and criticisms on Jenks's proposal. Possible arbitrage activities between gold and silver are analyzed in Sections 4 in order to evaluate the sustainability of Jenks's system. We conclude that: (1) Jenks's new systemm ight have been stable in 1904-16 and 1928-30; (2) technically speaking, this was a remarkable design.Professor Jeremiah Jenks (1856-1929), Chinese monetary reform of 1903, gol-dexchange standard, silver standard

    Observation and Understanding of the Initial Unstable Electrical Contact Behaviors

    Get PDF
    Reliable and long-lifetime electrical contact is a very important issue in the field of radio frequency microelectromechanical systems (MEMS) and in energy transmission applications. In this paper, the initial unstable electrical contact phenomena under the conditions of micro-newton-scale contact force and nanometer-scale contact gap have been experimentally observed. The repetitive contact bounces at nanoscale are confirmed by the measured instantaneous waveforms of contact force and contact voltage. Moreover, the corresponding physical model for describing the competition between the electrostatic force and the restoring force of the mobile contact is present. Then, the dynamic process of contact closure is explicitly calculated with the numerical method. Finally, the effects of spring rigidness and open voltage on the unstable electrical contact behaviors are investigated experimentally and theoretically. This paper highlights that in MEMS systems switch, minimal actuation velocity is required to prevent mechanical bounce and excessive wear

    Empirical modeling of the stellar spectrum of galaxies

    Full text link
    An empirical method of modeling the stellar spectrum of galaxies is proposed, based on two successive applications of Principal Component Analysis (PCA). PCA is first applied to the newly available stellar library STELIB, supplemented by the J, H and Ks_{s} magnitudes taken mainly from the 2 Micron All Sky Survey (2MASS). Next the resultant eigen-spectra are used to fit the observed spectra of a sample of 1016 galaxies selected from the Sloan Digital Sky Survey Data Release One (SDSS DR1). PCA is again applied, to the fitted spectra to construct the eigen-spectra of galaxies with zero velocity dispersion. The first 9 galactic eigen-spectra so obtained are then used to model the stellar spectrum of the galaxies in SDSS DR1, and synchronously to estimate the stellar velocity dispersion, the spectral type, the near-infrared SED, and the average reddening. Extensive tests show that the spectra of different type galaxies can be modeled quite accurately using these eigen-spectra. The method can yield stellar velocity dispersion with accuracies better than 10%, for the spectra of typical S/N ratios in SDSS DR1.Comment: 34 pages with 18 figures, submitted to A

    Structural and wetting properties of nature\u27s finest silks (order Embioptera)

    Get PDF
    Insects from the order Embioptera (webspinners) spin silk fibres which are less than 200 nm in diameter. In this work, we characterized and compared the diameters of single silk fibres from nine species—Antipaluria urichi, Pararhagadochir trinitatis, Saussurembia calypso, Diradius vandykei, Aposthonia ceylonica, Haploembia solieri, H. tarsalis, Oligotoma nigra and O. saundersii. Silk from seven of these species have not been previously quantified. Our studies cover five of the 10 named taxonomic families and represent about one third of the known taxonomic family-level diversity in the order Embioptera. Naturally spun silk varied in diameter from 43.6 ± 1.7 nm for D. vandykei to 122.4 ± 3.2 nm for An. urichi. Mean fibre diameter did not correlate with adult female body length. Fibre diameter is more similar in closely related species than in more distantly related species. Field observations indicated that silk appears shiny and smooth when exposed to rainwater. We therefore measured contact angles to learn more about interactions between silk and water. Higher contact angles were measured for silks with wider fibre diameter and higher quantity of hydrophobic amino acids. High static contact angles (ranging up to 122° ± 3° for An. urichi) indicated that silken sheets spun by four arboreal, webspinner species were hydrophobic. A second contact angle measurement made on a previously wetted patch of silk resulted in a lower contact angle (average difference was greater than 27°) for all four species. Our studies suggest that silk fibres which had been previously exposed to water exhibited irreversible changes in hydrophobicity and water adhesion properties. Our results are in alignment with the ‘super-pinning’ site hypothesis by Yarger and co-workers to describe the hydrophobic, yet water adhesive, properties exhibited by webspinner silk fibres. The physical and chemical insights gained here may inform the synthesis and development of smaller diameter silk fibres with unique water adhesion properties

    BKM Lie superalgebra for the Z_5 orbifolded CHL string

    Full text link
    We study the Z_5-orbifolding of the CHL string theory by explicitly constructing the modular form tilde{Phi}_2 generating the degeneracies of the 1/4-BPS states in the theory. Since the additive seed for the sum form is a weak Jacobi form in this case, a mismatch is found between the modular forms generated from the additive lift and the product form derived from threshold corrections. We also construct the BKM Lie superalgebra, tilde{G}_5, corresponding to the modular form tilde{Delta}_1 (Z) = tilde{Phi}_2 (Z)^{1/2} which happens to be a hyperbolic algebra. This is the first occurrence of a hyperbolic BKM Lie superalgebra. We also study the walls of marginal stability of this theory in detail, and extend the arithmetic structure found by Cheng and Dabholkar for the N=1,2,3 orbifoldings to the N=4,5 and 6 models, all of which have an infinite number of walls in the fundamental domain. We find that analogous to the Stern-Brocot tree, which generated the intercepts of the walls on the real line, the intercepts for the N >3 cases are generated by linear recurrence relations. Using the correspondence between the walls of marginal stability and the walls of the Weyl chamber of the corresponding BKM Lie superalgebra, we propose the Cartan matrices for the BKM Lie superalgebras corresponding to the N=5 and 6 models.Comment: 30 pages, 2 figure

    One Loop Renormalization of the Littlest Higgs Model

    Get PDF
    In Little Higgs models a collective symmetry prevents the Higgs from acquiring a quadratically divergent mass at one loop. This collective symmetry is broken by weakly gauged interactions. Terms, like Yukawa couplings, that display collective symmetry in the bare Lagrangian are generically renormalized into a sum of terms that do not respect the collective symmetry except possibly at one renormalization point where the couplings are related so that the symmetry is restored. We study here the one loop renormalization of a prototypical example, the Littlest Higgs Model. Some features of the renormalization of this model are novel, unfamiliar form similar chiral Lagrangian studies.Comment: 23 pages, 17 eps figure
    corecore