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Abstract: 
Surface adhesion phenomena of gold-plated copper contact materials are studied in conditions of 
nonarc load (5/15/25 V and 0.2/0.5/1 A) and superlow speed (25 and 50 nm/s) realized by a 
piezoactuator during the making and breaking processes. It is shown that softening and melting of local 
asperities leads to interface adhesion, which results from the joule heat generated by the contact 
resistance; it is determined that the change of contact force with time obeys the negative exponential 
distribution and the time constant is associated with the adhesion force directly. Based on the fitting 
experimental data, the relationship between the adhesion force 𝐹𝐹𝑧𝑧 and the contact resistance 𝑅𝑅𝑑𝑑 while 
breaking can be expressed as 𝐹𝐹𝑧𝑧  ∝  𝑅𝑅𝑑𝑑−1  , which indicates that the main component of contact 
resistance is the bulk resistance of weld nugget and the constriction resistance is negligible. 

SECTION I. Introduction 
Nowadays, surface metal coatings are becoming increasingly important in modern electronic and 
electrical industries. Such trends are driven by many useful functions offered by the coatings such as 
corrosion and wear protection, diffusion barriers, conductive circuit elements, fabrication of passive 
devices on dielectric surfaces, and others.1 Remarkably, gold-plated contacts, which offer the 
advantages of low and stable electrical contact resistance and thermal contact resistance, and high off 
isolation, are widely used in miniature electromagnetic relays,2 electrical connectors,3 integrated 
circuits,4 thin-film devices,5 and microelectromechanical system (MEMS).6–7,8 Despite these unique 
attributes, typical failure phenomena including surface adhesion (also called stiction), contact welding, 
and intermittency still occur during electrical contact events and remain a concern.9,10,11,12,13 To our 
knowledge, the dominant physical failure mechanisms of surface adhesion for gold-plated electrical 
contact material are not fully understood yet. Therefore, the current situation offers both challenges 
and opportunities for miniaturization of traditional electromechanical devices and practical MEMS 
switches. 

In general, the electrical contact behavior is defined as the relationship between the contact voltage or 
contact resistance versus the contact force during loading and unloading events. Moreover, such 
behaviors are complicated by a thermal–electrical–mechanical coupled field, partial asperity melting, 



and phase transitions that coexist at the interface.14,15 It has been proved that adhesion phenomenon 
between contact materials is directly related to the physical properties of the contact metal materials 
(hardness, electrical conductivity, thermal conductivity, etc.), surface condition (surface roughness and 
surface film’s properties), mechanical parameters (making/breaking speed and contact force), 
environmental atmosphere parameters (temperature, humidity, and atmosphere), and electrical 
parameters (carrying current, open voltage).1 

It is reported that the maximum breaking velocity of an electromagnetic relay is perhaps the magnitude 
of several hundred millimeters per second.16 The adhesion phenomenon is mainly attributed to the 
transient melting of contact surface under this velocity. These random characteristics of adhesion force 
(or welding force) offer both measurement challenges and difficulties for determining the adhesion 
physical mechanism. The joule heat duration is correspondingly extended when contact velocity is 
reduced. Thus, it would be beneficial for us to know the root cause and influencing factors about the 
adhesion. If we take the order of micrometers per second as a low velocity, then the order of 
nanometers per second used is considered as a superlow velocity in this paper. 

The studies of properties and mechanism of material surface adhesion are always hot topics in the field 
of metal interface physics. Kwon et al.17 investigated the relationship between contact resistance and 
contact force during making and breaking operations of glass substrate with gold coating and found that 
the adhesion phenomenon was the result of van der Waals force or the binding force between metallic 
bonds. Tringe et al.18 stated that the contact resistance and adhesive properties of Au/Au contact 
interface were determined by the adsorption film of pollution using an interfacial force microscopy. 
Patton and Zabinski19 proposed that electrical current had a profound effect on surface adhesion of Au 
coatings and concluded that adhesion was linked to the creation of a smooth surface texture and 
associated van der Waals forces. They also observed that aging of the contacts in air could reduce 
adhesion. Gregori and Clarke20 evaluated the adhesion characteristics with repeated actuation and 
proposed that the increase in adhesive force was attributed to mechanical creep of the gold contacts. 
The velocity reported in17 is 30 nm/s and that used in18 is 4.2 nm/s. In addition, Miyanaga et al.21–22,23,24 
researched on the generation and break of the molten bridge at a low speed of 100–300 μm/s and 
found that the length and diameter of molten bridge are affected by the heat conditions, including the 
thermal conductivity and the velocity of the heat flow. 

In this paper, we devised an in situ contact measurement apparatus to examine the effect of the current 
load condition on electrical contact behaviors of Au-plated contacts. From this, the physical mechanism 
of occurred adhesion during contact breaking is discussed under different load voltages and load 
currents. Next, the adhesion resistance was defined and the relationship between adhesion resistance 
and adhesion force is examined. Finally, we proved that the intrinsic characteristics of adhesion 
resistance is bulk resistance of the welded nugget; its knowledge is essential to understand the 
formation and rupture process of adhesion at superlow making and breaking speeds. 

SECTION II. Experimental Setup and Measurements 
The in situ contact measurement apparatus consists of four main modules including a 4-DOF motion 
structure, a measurement unit, software control, and an auxiliary optical camera that are shown in Fig. 
1. The horizontal actuation of the moving electrode was obtained by means of a precision slider that 
was pushed by a piezoelectric actuator (LTC2013-013, PiezoMotor AB, Sweden). The motion velocity can 



be set between 5 nm/s and 12 mm/s. The desired displacement of the moving electrode was controlled 
by the motor driver with a position feedback loop, which was provided by the assembled grating ruler 
(RGH25F-5 nm, Renishaw, U.K.). Fig. 2 shows the schematic of the experimental circuit. The motor driver 
(PMD101, PiezoMotor AB, Sweden) received the controlling instruction from the personal computer (PC) 
and provides closed-loop control for Piezomotor by reading the feedback position of grating ruler, which 
had a displacement resolution of 5 nm and at a 10-Hz sampling rate. 

 

 

Fig. 1. Schematic of the test rig. 

 



 

Fig. 2. Experimental circuit. 

The shank of the fixed contact was welded on the printed circuit board (PCB) to clamp the electrode and 
its two terminals can be extended to the lateral bonding pads through PCB wirings. Using the four-wires 
method, the instantaneous value of contact voltage drop was continuously measured besides the 
corresponding contact force. The normal contact force between two electrodes was assessed using a 
strain sensor (PW4MC3, HBM, Germany), which had the measurement range of 3 N and a resolution of 5 
mN. Additional one and two combined linear translation stages were connected with the moving part 
and fixed part, respectively, for manual adjustment. The whole mechanical part was placed in a dust-
tight transparent Plexiglas housing that was secured on a bench-top isolation system (PWA090, 
Thorlabs, U.K.). The spatial relationship between two electrodes during experiment can be observed by 
the charge-coupled device camera (SJM-200C, China). During testing, the measured data were 
simultaneously acquired by two multimeters (34401A, Agilent, USA) followed by uploading to the PC. 
The multimeters had the resolutions of 1 μV and the integration time of 10NPLC. The microstepping 
number of 10 steps per second and the step length of 5 nm are configured for the piezoactuator, so the 
average making and breaking velocity is 50 nm/s. Therefore, the sampling rate of 2.5 Hz fully meets the 
sampling requirement of piezoacturator in superslow motion. The moving electrode is a hemisphere-
shaped rider, with a diameter of 2 mm, and the fixed electrode is a flat sample, both made of copper 
alloy and electroplated with Au (1-μm thick). The roughness was measured using a confocal optical 
microscope (LEXT 3000, Olympus) and resulting in a surface roughness below 0.8 μm. To remove the 
film in the samples surface, we kept them under the condition of high temperature 120 °C and relative 
humidity 80% for more than 24 h, and then degreased using acetone, alcohol, and distilled water in an 
ultrasonic cleaner, and dried and carefully mounted in the test measurement apparatus. The details of 
the experimental conditions used are detailed in Table I. 

TABLE I Details of the Experimental Conditions Used in This Paper 

 



Prior to the experiment, the source voltage is set as the open-circuit voltage (also called load voltage 𝑈𝑈) 
and the load current 𝐼𝐼 is set by the adjustable resistor in the contact-closed position. The loading and 
unloading motor speeds are both set as 𝑣𝑣, while the expected contact force is designated as 𝐹𝐹𝑐𝑐. Scanning 
electron microscopy (Helios Nanolab 600i, FEI, USA) was used to characterize the adhesion area. 

Fig. 3 shows a comparison example of the measured variation of the contact force and contact voltage 
of gold-to-gold contacts as a function of actuation time with and without current loading. The velocity of 
the actuator movement was maintained at 50 nm/s, as the piezoactuator pushes the contacts together. 
For the current loading case, the whole process is divided into the following stages.  

1. A (The Initial Contact): Start of the electrical contact and an abrupt decline in contact voltage 
from 15 to 0.16 V occurred. 

2. A-B (The Softening and Melting Stage): The contact force increased nonlinearly; meanwhile the 
contact voltage kept decreasing sharply. 

3. B-C (The Linear Loading Stage): The contact force increases linearly to the expected value of 50 
mN and the contact voltage stabilizes at 2 mV. 

4. C-D (The Linear Unloading Stage): The contact force linearly decreases to zero with no significant 
change in the contact voltage. 

5. D-E (The Adhesive Stage): The contact force shifts to an increasing tensile force and the 
corresponding contact voltage begins to increase. The largest value of tensile force is defined as 
the adhesion force 𝐹𝐹𝑧𝑧. 

6. E-F (The Mechanical Breaking Stage/the Weld Breaking Stage): The weld region of contacts 
breaks and the contact force restored to zero while the contact voltage jumps from 4 to 30 mV. 

7. F-G (The Metal Bridge Remelting Stage): The contact force kept zero and the contact voltage 
fluctuates between 80 mV and 0.43 V with the feature of repeatedly rising up slowly and 
dropping down rapidly. 

8. G (The Electrical Breaking Stage): The contact pairs were in electrical off status and the contact 
voltage returned to the load voltage 𝑈𝑈. 

 



 

Fig. 3. Variation of contact force and contact voltage of Au-plated contacts as a function of the time 
during making and breaking (the speed is 50 nm/s and the load is 15 V/1 A). 

As shown in Fig. 3, there are some apparent differences in A-B stage and D-E-F stage of the contact force 
curve in contrast to without current condition. It was clearly seen that the contact force curve presents a 
nonlinear softened spring trend in the loading stage and follows the linear trend, which is almost the 
same with the no current case. In addition, the slope of C-D segment and D-E segment, which belong to 
the contact force behavior curve, is consistent (shown in Fig. 3). This means that the two electrodes 
have bonded together completely. Therefore, the point E corresponds to the breaking moment of 
adhesion and the adhesion force 𝐹𝐹𝑧𝑧 is 2.6 mN. The contact voltage at point E is defined as the breaking 
voltage 𝑈𝑈𝑑𝑑  (4 mV in Fig. 3) and the contact resistance is defined as 𝑅𝑅𝑑𝑑. Since 𝑈𝑈𝑑𝑑 ≪ 𝑈𝑈, the current in D-E 
stage is considered to be constant and thus 𝑅𝑅𝑑𝑑 ≈ 𝑈𝑈𝑑𝑑/𝐼𝐼. The contact resistance 𝑅𝑅𝑑𝑑 increases with the 
piezoactuator position during the tension process in D-E phase and it is related to the adhesion force. 
The contact voltage in point E rises sharply, so 𝑈𝑈𝑑𝑑 is easy to distinguish by this rising edge. 𝑅𝑅𝑑𝑑 is defined 
as adhesion resistance, which means the contact resistance when adhesion occurs. 

SECTION III. Discussion 
Fig. 4(a) and (b) shows the variation of the contact force and contact voltage of Au-plated material as a 
function of the position of the piezoactuator, at two different electrical current loading conditions, 
respectively. In Fig. 4(a), the current is applied only when contact breaking. The whole process in Fig. 3 
could be divided into the following stages: 1) A (force loading stage); 2) B (current loading initial point); 
and 3) C (unloading stage). For comparison, Fig. 4(b) shows the results of load current exerted only 
when contact making. The whole process in Fig. 4 could be divided into the following stages: 1) A 
(loading stage); 2) B (end of the current loading); and 3) C (force unloading stage). Combined with Fig. 3, 
the occurred contact adhesive phenomena are observed only when the current is applied in the contact 
making stage. In other words, the current applied in the contact making stage is the key factor of 
adhesion phenomenon. It appeared that from the data, the applied making current is the primary 
reason for the induced adhesion force. 



 



 

Fig. 4. Variation of contact voltage and contact force of Au-plated contacts as a function of the actuator 
position during making and breaking contacts (with a load voltage of 15 V, a load current of 1 A, and a 
speed of 50 nm/s). (a) Current is loading when contact breaking. (b) Current is loading when contact 
making. 

To acknowledge the physical mechanism of adhesion force, the changes of contact force and joule heat 
during initial electrical contact are analyzed in more detail. 

A. Physical Mechanism of Adhesion Force 
As shown in Fig. 3, the adhesion phenomenon is obviously correlative with the current load case, so it is 
presumed that the adhesion force is related to the joule heat produced by the contact resistance during 
making. The softening point of Au is 100 °C (80 mV) and the melting point of Au is 1063 °C (430 mV).25 
Assuming that the highest asperity in contact needs to be plastically deformed, while the contact 
voltage value indicates that the contact temperature reaches the softening temperature, the plastic 
deformation of the asperities proceeds more rapidly and leads to an increase in the effective contact 
area. Therefore, the softening of the highest asperities on the contact surface leads to the noisy contact 
force behavior seen in the A-B stage compared with the no current load case. The nonlinear relationship 
between contact force and actuator position in Fig. 3 supports this claim. We define 𝑘𝑘 the strain 

coefficient of the force sensor, 𝛿𝛿 the displacement of actuator, and 𝛿𝛿 ’ the deformation caused by the 
softening and melting of the gold coating. Thus, the relationship between the contact force and time is 
expressed as 



𝐹𝐹𝑐𝑐 = 𝑘𝑘�𝛿𝛿 − 𝛿𝛿 ′� = 𝑘𝑘𝑘𝑘 �𝑡𝑡 − 𝑡𝑡0 �1 − 𝑒𝑒−
𝑡𝑡
𝜏𝜏�� (1) 

where δ′ is assumed a negative exponential function, 𝛿𝛿′ = 𝛿𝛿0 �1 − 𝑒𝑒−
𝑡𝑡
𝜏𝜏� = 𝑣𝑣𝑡𝑡0 �1 − 𝑒𝑒−

𝑡𝑡
𝜏𝜏�, and  𝑡𝑡0 is 

the intersection between the linear part of the curve and the horizontal coordinate axis, which indirectly 
shows the delay time during softening process. Hence, 𝛿𝛿0 is the corresponding shift displacement and 
𝜏𝜏 is the time constant in the softening process. As shown in Fig. 3, 𝑘𝑘 = 19.09 mN/μm, 𝑡𝑡0 = 16.878s, 
and 𝜏𝜏 = 21.754 s and these numbers are the fitting results from Origin 9.0. 

We also collected shift displacement 𝛿𝛿0 and time constant τ during each operation, and Fig. 5 shows the 
relationship between 𝛿𝛿0 and 𝜏𝜏 for 108 repetitive experimental results that are provided to ensure the 
accuracy of fitting. As shown in Fig. 5, the adjacent R-square of the fitting results is 0.7983, which means 
a significant linear correlation between 𝛿𝛿0 and 𝜏𝜏. 

 

 

Fig. 5. Scatter diagram of 𝛿𝛿0 –𝜏𝜏 under the conditions of 15 V/1 A and 50 nm/s. 

The contact voltage of the A-B stage is less than 0.1 V, so the corresponding load current 𝐼𝐼 can be taken 
as constant and the heat production power 𝑃𝑃𝑐𝑐 of contact resistance is expressed as 𝐼𝐼2𝑅𝑅.. Heat is 
primarily dissipated by conduction and since the heat dissipation power 𝑃𝑃𝑠𝑠  is also proportional to 
contact area, the heat accumulation power is given by 

𝑃𝑃 = 𝑃𝑃𝑐𝑐 − 𝑃𝑃𝑠𝑠 = 𝐼𝐼2𝑅𝑅 − 2𝜆𝜆𝜆𝜆 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (2) 



where 𝜆𝜆 is the heat conductivity, (𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑) is the temperature gradient at contact interface, and 𝐴𝐴 is 
the contact area. The dissipation rate of contact heat can be reflected by the time constant 𝜏𝜏. When 
𝜏𝜏 increases, the dissipation rate slows down and brings out the longer acting duration of contact heat, 
and at the same time, 𝛿𝛿0 goes up and thus there is a positive correlation relationship between 𝛿𝛿0 and 
𝜏𝜏. 

In addition, time constant 𝜏𝜏 is closely correlated with the contact area 𝐴𝐴, which is equivalent to the 
dissipation area. Since the increase in the effective contact area results in the reduced contact 
resistance and the increased dissipated heat through conduction, which are followed by the shrink of 
heating power and the increment of cooling power. Hence, the duration for the contact temperature 
rise reaching stabilization is reduced. 

The softening and melting of contact surface is partially dependent on the contact area 𝐴𝐴; when the 
contact temperature reaches the softening temperature, the plastic deformation of the asperities 
proceeds more rapidly and leads to an increase in the effective contact area,26 and thus facilitates 
contact heat dissipation. Therefore, the lower 𝜏𝜏 implies that softening and melting produce substantial 
adhesion force. In the case of higher 𝜏𝜏, under the same contact conditions, however, the measured 
weak adhesive force indicates that there are no obvious softening and melting asperities due to the slow 
thermal equilibrium process. 

Fig. 6 shows the scatter diagram in terms of 𝐹𝐹𝑧𝑧 and 𝜏𝜏, which are the same results of Fig. 5. This suggests 
the above claim and analysis that the adhesive force is directly dependent on the time constant 𝜏𝜏.  

 

 



 

Fig. 6. Relationship between adhesion force 𝐹𝐹𝑧𝑧 and time constant τ under the conditions of 15 V/1 A and 
50 nm/s. 

B. Relationship Between Adhesion Resistance and Adhesion Force 
The moving and fixed electrodes are completely welding together in the D-E stage. As shown in Fig. 8, 

the adhesion force 𝐹𝐹𝑧𝑧   is nearly inversely proportional to the contact resistance 𝑅𝑅𝑑𝑑. For a welding case, 
the tensile strength is defined as follows: 

𝐹𝐹𝑧𝑧 = 𝜎𝜎𝑏𝑏𝐴𝐴𝑧𝑧  (3) 

where σb is the tensile strength.27 Therefore, the adhesion force 𝐹𝐹𝑧𝑧 of gold-plated contacts is affected by 
the adhesion area 𝐴𝐴𝑧𝑧. 

 



 

Fig. 8. Fitting results comparison with different indices 𝑛𝑛 in double-logarithmic coordinate. 

As known, the contact resistance 𝑅𝑅𝑑𝑑  is made up of constriction resistance 𝑅𝑅𝑠𝑠 and film resistance 
𝑅𝑅𝑓𝑓 .. Thus, based on the classical Holm’s electrical contact theory,26 𝑅𝑅𝑑𝑑 is given by 

𝑅𝑅𝑑𝑑 = 𝜎𝜎
𝑛𝑛𝑛𝑛𝑎𝑎𝑝𝑝2

+ 𝜌𝜌
2𝑛𝑛𝑎𝑎𝑝𝑝 (4) 

where 𝜌𝜌 is the resistivity of the contact material, 𝜎𝜎 is the surface resistivity of the film, 𝑎𝑎𝑝𝑝 is the radius of 
spots, and 𝑛𝑛 is the number of spots. Assuming that there is no film resistance within the contact 
welding, it results in 

𝑅𝑅𝑑𝑑 = 𝜌𝜌
2

(𝐴𝐴𝑝𝑝
𝜋𝜋

)−
1
2 (5) 

where 𝐴𝐴𝑝𝑝 is the total area of conductive spots, in which 𝐴𝐴𝑝𝑝 ≈ 𝐴𝐴𝑧𝑧. Combining (3) and (5), results in the 
following equation: 

𝐹𝐹𝑧𝑧 = 𝜋𝜋𝜎𝜎𝑏𝑏𝜌𝜌2

4
𝑅𝑅𝑑𝑑−2 = 𝐶𝐶1𝑅𝑅𝑑𝑑−2 (6) 

where 𝐶𝐶1 = 𝜋𝜋𝜎𝜎𝑏𝑏𝜌𝜌2/4. For a typical bulk electrical junction, the current flow lines become increasingly 
distorted and bundle together to pass through the separate contact spots. Constriction of the current 
results in the reduction of effective conduction area and thus increases electrical resistance. The 
additional resistance is termed as constriction resistance. 

The premise of (3) is important that the current-potential field in constriction region is completely 
symmetrical and the thickness of spot could be considered as zero or small enough (on the order of 
angstroms). The thickness of adhesion part is much larger than this order of magnitude when there is 
adhesion between contact interfaces. Hence, the physical model of contact resistance considering the 
thickness of adhesion parts is established, as shown in Fig. 7. In the adhesion case, total contact 
resistance is divided into constriction resistance 2𝑅𝑅𝑠𝑠s and bulk resistance 𝑅𝑅𝑡𝑡, and thus the contact 
resistance could be given by  

https://ieeexplore.ieee.org/document/7113833/authors#deqn3
https://ieeexplore.ieee.org/document/7113833/authors#deqn5
https://ieeexplore.ieee.org/document/7113833/authors#deqn3


𝑅𝑅𝑑𝑑 = 2𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑡𝑡 = 𝜌𝜌
2
�𝐴𝐴𝑝𝑝
𝜋𝜋
�
−12 + 𝜌𝜌𝜌𝜌𝐴𝐴𝑝𝑝−1 (7) 

in which 𝑙𝑙  is the thickness of the adhesion part. When only the bulk resistance 𝑅𝑅𝑡𝑡 is considered, the 
relationship between adhesion force 𝐹𝐹𝑧𝑧 and contact resistance 𝑅𝑅𝑑𝑑 is expressed by 

𝐹𝐹𝑧𝑧 = 𝜎𝜎𝑏𝑏𝐴𝐴𝑧𝑧 = 𝜎𝜎𝑏𝑏𝜌𝜌𝜌𝜌𝑅𝑅𝑑𝑑−1 = 𝐶𝐶2𝑅𝑅𝑑𝑑−1 (8) 

where 𝐶𝐶2 = 𝜌𝜌𝜌𝜌𝜎𝜎𝑏𝑏. Using (6) and (8), the mathematical expression of adhesion force results in 

𝐹𝐹𝑧𝑧 = 𝐶𝐶𝑅𝑅𝑑𝑑−𝑛𝑛  (9) 

where the range of the power exponent 𝑛𝑛 is 1–2 and the coefficient 𝐶𝐶 is related to the strain strength 
𝜎𝜎𝑏𝑏, resistivity 𝜌𝜌, and adhesion thickness 𝑙𝑙. 

 

 

Fig. 7. Schematic of contact resistance during adhesion stage. 

The actual measurement results of adhesion resistance always consist of the additional resistance 𝑅𝑅0 in 
the circuit, which refers to the resistance of wire and clamping fixture connection part besides the 
contact resistance 𝑅𝑅𝑑𝑑. In another experiment, the measured additional resistance 𝑅𝑅0 is about 1–2 
mΩ (tin soldering the fixed and moving electrodes together). Therefore, this term could not be 
neglected during mathematical fitting and thus (9) is rewritten as 

https://ieeexplore.ieee.org/document/7113833/authors#deqn6
https://ieeexplore.ieee.org/document/7113833/authors#deqn8
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𝐹𝐹𝑧𝑧 = 𝐶𝐶𝑅𝑅𝑑𝑑−𝑛𝑛 = 𝐶𝐶(𝑅𝑅𝑚𝑚 − 𝑅𝑅0)−𝑛𝑛 (10) 

where 𝑅𝑅𝑚𝑚 is the measured contact resistance. Fig. 8 shows the relationship between 𝐹𝐹𝑧𝑧  and 𝑅𝑅𝑑𝑑  with 
different current loads at a speed of 50 nm/s, an open voltage 𝑈𝑈 of 5 V, and load currents 𝐼𝐼 of 1, 0.5, and 
0.2 A, respectively. As shown, when 𝑅𝑅𝑑𝑑 > 10mΩ, the adhesion force 𝐹𝐹𝑧𝑧 is less than 1 mN. Meanwhile, 
when the contact resistance 𝑅𝑅𝑑𝑑 is less than 10 mΩ, the adhesion force increases apparently and tends to 
be one of the asymptote (the additional resistance 𝑅𝑅0)) with the decrease in resistance. When 𝐶𝐶, 𝑅𝑅0, 
and 𝑛𝑛 are free variables, the best fitting expression of the adhesion force in terms of the contact 
resistance obtained by Origin 9.0 is given by 

𝐹𝐹𝑧𝑧 = 0.965(𝑅𝑅𝑑𝑑 − 1.278)−1.03. (11). 

Fig. 8 also shows the fitting results comparison with different indices 𝑛𝑛 in double-logarithmic coordinate. 
With the 𝐹𝐹𝑧𝑧 –𝑅𝑅𝑑𝑑  experimental data and (10) fitting, the index parameter 𝑛𝑛 is selected as 1 and 2, and an 
independent variable. When 𝑛𝑛 is designated as the independent variable, which is the best fitting power 
exponent of 1.03, the fitting result is 𝐶𝐶 = 0.965 and 𝑅𝑅 0 = 1.278. When 𝑛𝑛 = 1, the fitting result is 𝐶𝐶 =
0.925 and 𝑅𝑅0 = 1.303, which is similar to the case of 𝑛𝑛 = 1.03. 

As shown in Table II, four different load voltages and motion speed condition combinations of 5 V/25 
nm/s, 5 V/50 nm/s, 25 V/25 nm/s, and 25 V/50 nm/s are applied, and the fitted index parameter n is 
listed, respectively, in Table II. It is noted that the best fitting index 𝑛𝑛 is from 0.92 to 1.27, which almost 
approaches to 1. Comparing with the case of 𝑛𝑛 = 1, no substantial difference in fitting results is 
observed, but the results of 𝑛𝑛 = 2 are much different from 𝑛𝑛 = 𝑛𝑛0. Therefore, it is reasonable to take 
𝑛𝑛 = 1 as the best fitting index for describing the relationship between adhesion force and contact 
resistance. From the above results, it is confirmed that the contact resistance is mainly bulk resistance of 
the welded nugget, and the constriction resistance adjacent to the interface is negligible. Hence, (8) can 
be used for expressing the relationship between 𝐹𝐹𝑧𝑧 and 𝑅𝑅𝑑𝑑, then  

𝐶𝐶 = 𝐶𝐶2 = 𝜌𝜌𝜌𝜌𝜎𝜎𝑏𝑏 . (12) 

TABLE II Contrast of R-Square of Curves Under Different Conditions 

 

Surface morphology of the gold-plated contacts after making/breaking is shown in Fig. 9. In this case, 
the measured adhesion force 𝐹𝐹𝑧𝑧  is 2 mN, and the strain strength of gold is 𝜎𝜎𝑏𝑏 = 140 N/mm 2,22 the 
resistivity is 𝜌𝜌 = 21.9𝜇𝜇Ω ⋅ mm, and the contact resistance is calculated about 1.08 mΩ using (11). 
Furthermore, the thickness and area of the adhesion parts is estimated to 0.2 μm  and 14 μm2   using (3) 
and (12), respectively, and then the current density through the adhesion part is about 
3.5 × 1010  A/ m2  when the current is 0.5 A. As shown in Fig. 9, the stacked melting traces are almost 
circular in shape and the area of top one is 9.6 𝜇𝜇m2, which is consistent with the above estimation. And 

https://ieeexplore.ieee.org/document/7113833/authors#deqn10
https://ieeexplore.ieee.org/document/7113833/authors#deqn8
https://ieeexplore.ieee.org/document/7113833/authors#deqn11
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https://ieeexplore.ieee.org/document/7113833/authors#deqn12


the observed stacked melting traces are mainly attributed to the metal bridge characteristic, which is 
the fluctuation of intermittent contact bridge voltage after adhesion. 

 

 

Fig. 9. Surface morphology of the gold-plated contacts after making/breaking (with a load voltage of 5 V, 
a load current of 0.5 A, and a speed of 25 nm/s). (a) Cathode. (b) Anode. 

SECTION IV. Conclusion 
We have measured the variations in contact voltage and contact force of Au-plated contacts as a 
function of piezoactuator position at a speed of 25 and 50 nm/s. The experimental results show that the 
slow velocity extends the joule heating duration, and the continuous joule heat lead to the partial 
highest asperities softening and melting during initial contact. That is the reason for the contact force 
curve being bending and the subsequent adhesion phenomena. The stronger adhesion force is 
attributed to the occurred higher initial contact temperature combined with the higher temperature 
decrease rate in making process. The correlation between adhesion force and adhesion resistance is 
confirmed as the inverse proportional function, which is a good indication that adhesion resistance is 
the bulk resistance of weld nugget. From these results, the adhesion behaviors of Au-to-Au contacts 
under current load conditions could be explained. In our opinion, the transient contact duration of 
making process needs to be reduced when designing and fabricating switches and metal contacts. It is 
expected that this preliminary study on the adhesion process and relative influencing factors will be 
useful for reducing the stiction failure probability of MEMS switches. 
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