2,275 research outputs found
PRODUÇÃO CIENTÍFICA BRASILEIRA EM ADMINISTRAÇÃO NA DÉCADA DE 2000
Presentation at the forum: scientific production in Business Administration in the period 2000-2010 with reflections and ideas in the area. Presentation at the forum: scientific production in Business Administration in the period 2000-2010 with reflections and ideas in the area
A p-Spin Interaction Ashkin-Teller Spin-Glass Model
A p-spin interaction Ashkin-Teller spin glass, with three independent
Gaussian probability distributions for the exchange interactions, is studied by
means of the replica method. A simple phase diagram is obtained within the
replica-symmetric approximation, presenting an instability of the paramagnetic
solution at low temperatures. The replica-symmetry-breaking procedure is
implemented and a rich phase diagram is obtained; besides the paramagnetic
phase, three distinct spin-glass phases appear. Three first-order critical
frontiers are found and they all meet at a triple point; among such lines, two
of them present discontinuities in the order parameters, but no latent heat,
whereas the other one exhibits both discontinuities in the order parameters and
a finite latent heat.Comment: 17 pages, 2 figures, submitted to Physica
Degeneracy Algorithm for Random Magnets
It has been known for a long time that the ground state problem of random
magnets, e.g. random field Ising model (RFIM), can be mapped onto the
max-flow/min-cut problem of transportation networks. I build on this approach,
relying on the concept of residual graph, and design an algorithm that I prove
to be exact for finding all the minimum cuts, i.e. the ground state degeneracy
of these systems. I demonstrate that this algorithm is also relevant for the
study of the ground state properties of the dilute Ising antiferromagnet in a
constant field (DAFF) and interfaces in random bond magnets.Comment: 17 pages(Revtex), 8 Postscript figures(5color) to appear in Phys.
Rev. E 58, December 1st (1998
Spinodal Decomposition in a Binary Polymer Mixture: Dynamic Self Consistent Field Theory and Monte Carlo Simulations
We investigate how the dynamics of a single chain influences the kinetics of
early stage phase separation in a symmetric binary polymer mixture. We consider
quenches from the disordered phase into the region of spinodal instability. On
a mean field level we approach this problem with two methods: a dynamical
extension of the self consistent field theory for Gaussian chains, with the
density variables evolving in time, and the method of the external potential
dynamics where the effective external fields are propagated in time. Different
wave vector dependencies of the kinetic coefficient are taken into account.
These early stages of spinodal decomposition are also studied through Monte
Carlo simulations employing the bond fluctuation model that maps the chains --
in our case with 64 effective segments -- on a coarse grained lattice. The
results obtained through self consistent field calculations and Monte Carlo
simulations can be compared because the time, length, and temperature scales
are mapped onto each other through the diffusion constant, the chain extension,
and the energy of mixing. The quantitative comparison of the relaxation rate of
the global structure factor shows that a kinetic coefficient according to the
Rouse model gives a much better agreement than a local, i.e. wave vector
independent, kinetic factor. Including fluctuations in the self consistent
field calculations leads to a shorter time span of spinodal behaviour and a
reduction of the relaxation rate for smaller wave vectors and prevents the
relaxation rate from becoming negative for larger values of the wave vector.
This is also in agreement with the simulation results.Comment: Phys.Rev.E in prin
Self-adapting method for the localization of quantum critical points using Quantum Monte Carlo techniques
A generalization to the quantum case of a recently introduced algorithm (Y.
Tomita and Y. Okabe, Phys. Rev. Lett. {\bf 86}, 572 (2001)) for the
determination of the critical temperature of classical spin models is proposed.
We describe a simple method to automatically locate critical points in
(Quantum) Monte Carlo simulations. The algorithm assumes the existence of a
finite correlation length in at least one of the two phases surrounding the
quantum critical point. We illustrate these ideas on the example of the
critical inter-chain coupling for which coupled antiferromagnetic S=1 spin
chains order at T=0. Finite-size scaling relations are used to determine the
exponents, and in agreement with previous
estimates.Comment: 5 pages, 3 figures, published versio
Critical Phenomena with Linked Cluster Expansions in a Finite Volume
Linked cluster expansions are generalized from an infinite to a finite
volume. They are performed to 20th order in the expansion parameter to approach
the critical region from the symmetric phase. A new criterion is proposed to
distinguish 1st from 2nd order transitions within a finite size scaling
analysis. The criterion applies also to other methods for investigating the
phase structure such as Monte Carlo simulations. Our computational tools are
illustrated at the example of scalar O(N) models with four and six-point
couplings for and in three dimensions. It is shown how to localize
the tricritical line in these models. We indicate some further applications of
our methods to the electroweak transition as well as to models for
superconductivity.Comment: 36 pages, latex2e, 7 eps figures included, uuencoded, gzipped and
tarred tex file hdth9607.te
Electron Glass in Ultrathin Granular Al Films at Low Temperatures
Quench-condensed granular Al films, with normal-state sheet resistance close
to 10 k, display strong hysteresis and ultraslow, non-exponential
relaxation in the resistance when temperature is varied below 300 mK. The
hysteresis is nonlinear and can be suppressed by a dc bias voltage. The
relaxation time does not obey the Arrhenius form, indicating the existence of a
broad distribution of low energy barriers. Furthermore, large resistance
fluctuations, having a 1/f-type power spectrum with a low-frequency cut-off,
are observed at low temperatures. With decreasing temperature, the amplitude of
the fluctuation increases and the cut-off frequency decreases. These
observations combine to provide a coherent picture that there exists a new
glassy electron state in ultrathin granular Al films, with a growing
correlation length at low temperatures.Comment: RevTeX 3.1, 4 pages, 4 figures (EPS files) (Minor Additions
The genotype-phenotype relationship in multicellular pattern-generating models - the neglected role of pattern descriptors
Background: A deep understanding of what causes the phenotypic variation arising from biological patterning
processes, cannot be claimed before we are able to recreate this variation by mathematical models capable of
generating genotype-phenotype maps in a causally cohesive way. However, the concept of pattern in a
multicellular context implies that what matters is not the state of every single cell, but certain emergent qualities
of the total cell aggregate. Thus, in order to set up a genotype-phenotype map in such a spatiotemporal pattern
setting one is actually forced to establish new pattern descriptors and derive their relations to parameters of the
original model. A pattern descriptor is a variable that describes and quantifies a certain qualitative feature of the
pattern, for example the degree to which certain macroscopic structures are present. There is today no general
procedure for how to relate a set of patterns and their characteristic features to the functional relationships,
parameter values and initial values of an original pattern-generating model. Here we present a new, generic
approach for explorative analysis of complex patterning models which focuses on the essential pattern features
and their relations to the model parameters. The approach is illustrated on an existing model for Delta-Notch
lateral inhibition over a two-dimensional lattice.
Results: By combining computer simulations according to a succession of statistical experimental designs,
computer graphics, automatic image analysis, human sensory descriptive analysis and multivariate data modelling,
we derive a pattern descriptor model of those macroscopic, emergent aspects of the patterns that we consider
of interest. The pattern descriptor model relates the values of the new, dedicated pattern descriptors to the
parameter values of the original model, for example by predicting the parameter values leading to particular
patterns, and provides insights that would have been hard to obtain by traditional methods.
Conclusion: The results suggest that our approach may qualify as a general procedure for how to discover and
relate relevant features and characteristics of emergent patterns to the functional relationships, parameter values
and initial values of an underlying pattern-generating mathematical model
Unconventional ferromagnetic and spin-glass states of the reentrant spin glass Fe0.7Al0.3
Spin excitations of single crystal Fe0.7Al0.3 were investigated over a wide
range in energy and reciprocal space with inelastic neutron scattering. In the
ferromagnetic phase, propagating spin wave modes become paramagnon-like
diffusive modes beyond a critical wave vector q0, indicating substantial
disorder in the long-range ordered state. In the spin glass phase, spin
dynamics is strongly q-dependent, suggesting remnant short-range spin
correlations. Quantitative model for S(energy,q) in the ``ferromagnetic'' phase
is determined.Comment: 4 pages, 5 figure
Loop algorithms for quantum simulations of fermion models on lattices
Two cluster algorithms, based on constructing and flipping loops, are
presented for worldline quantum Monte Carlo simulations of fermions and are
tested on the one-dimensional repulsive Hubbard model. We call these algorithms
the loop-flip and loop-exchange algorithms. For these two algorithms and the
standard worldline algorithm, we calculated the autocorrelation times for
various physical quantities and found that the ordinary worldline algorithm,
which uses only local moves, suffers from very long correlation times that
makes not only the estimate of the error difficult but also the estimate of the
average values themselves difficult. These difficulties are especially severe
in the low-temperature, large- regime. In contrast, we find that new
algorithms, when used alone or in combinations with themselves and the standard
algorithm, can have significantly smaller autocorrelation times, in some cases
being smaller by three orders of magnitude. The new algorithms, which use
non-local moves, are discussed from the point of view of a general prescription
for developing cluster algorithms. The loop-flip algorithm is also shown to be
ergodic and to belong to the grand canonical ensemble. Extensions to other
models and higher dimensions is briefly discussed.Comment: 36 pages, RevTex ver.
- …
