124 research outputs found

    Is the drug-induced hypersensitivity syndrome (DIHS) due to human herpesvirus 6 infection or to allergy-mediated viral reactivation? Report of a case and literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drug-Induced Hypersensitivity Syndrome (DIHS) is a severe and rare systemic reaction triggered by a drug (usually an antiepileptic drug). We present a case of DISH and we review studies on the clinical features and treatment of DIHS, and on its pathogenesis in which two elements (Herpesvirus infection and the drug) interact with the immune system to trigger such a syndrome that can lead to death in about 20% of cases.</p> <p>Case presentation</p> <p>We report the case of a 26-year old woman with fever, systemic maculopapular rash, lymphadenopathy, hepatitis and eosinophilic leukocytosis. She had been treated with antibiotics that gave no benefit. She was taking escitalopram and lamotrigine for a bipolar disease 30 days before fever onset. Because the patient's general condition deteriorated, betamethasone and acyclovir were started. This treatment resulted in a mild improvement of symptoms. Steroids were rapidly tapered and this was followed with a relapse of fever and a worsening of laboratory parameters. Human herpesvirus 6 (HHV-6) DNA was positive as shown by PCR. Drug-Induced Hypersensitivity Syndrome (DIHS) was diagnosed. Symptoms regressed on prednisone (at a dose of 50 mg/die) that was tapered very slowly. The patient recovered completely.</p> <p>Conclusions</p> <p>The search for rare causes of fever led to complete resolution of a very difficult case. As DIHS is a rare disease the most relevant issue is to suspect and include it in differential diagnosis of fevers of unknown origin. Once diagnosed, the therapy is easy (steroidal administration) and often successful. However our case strongly confirms that attention should be paid on the steroidal tapering that should be very slow to avoid a relapse.</p

    Effects of Vegetation, Corridor Width and Regional Land Use on Early Successional Birds on Powerline Corridors

    Get PDF
    Powerline rights-of-way (ROWs) often provide habitat for early successional bird species that have suffered long-term population declines in eastern North America. To determine how the abundance of shrubland birds varies with habitat within ROW corridors and with land use patterns surrounding corridors, we ran Poisson regression models on data from 93 plots on ROWs and compared regression coefficients. We also determined nest success rates on a 1-km stretch of ROW. Seven species of shrubland birds were common in powerline corridors. However, the nest success rates for prairie warbler (Dendroica discolor) and field sparrow (Spizella pusilla) were <21%, which is too low to compensate for estimated annual mortality. Some shrubland bird species were more abundant on narrower ROWs or at sites with lower vegetation or particular types of vegetation, indicating that vegetation management could be refined to favor species of high conservation priority. Also, several species were more abundant in ROWs traversing unfragmented forest than those near residential areas or farmland, indicating that corridors in heavily forested regions may provide better habitat for these species. In the area where we monitored nests, brood parasitism by brown-headed cowbirds (Molothrus ater) occurred more frequently close to a residential area. Although ROWs support dense populations of shrubland birds, those in more heavily developed landscapes may constitute sink habitat. ROWs in extensive forests may contribute more to sustaining populations of early successional birds, and thus may be the best targets for habitat management

    Febrile seizures and mechanisms of epileptogenesis: insights from an animal model.

    Get PDF
    Temporal lobe epilepsy (TLE) is the most prevalent type of human epilepsy, yet the causes for its development, and the processes involved, are not known. Most individuals with TLE do not have a family history, suggesting that this limbic epilepsy is a consequence of acquired rather than genetic causes. Among suspected etiologies, febrile seizures have frequently been cited. This is due to the fact that retrospective analyses of adults with TLE have demonstrated a high prevalence (20--&gt;60%) of a history of prolonged febrile seizures during early childhood, suggesting an etiological role for these seizures in the development of TLE. Specifically, neuronal damage induced by febrile seizures has been suggested as a mechanism for the development of mesial temporal sclerosis, the pathological hallmark of TLE. However, the statistical correlation between febrile seizures and TLE does not necessarily indicate a causal relationship. For example, preexisting (genetic or acquired) 'causes' that result independently in febrile seizures and in TLE would also result in tight statistical correlation. For obvious reasons, complex febrile seizures cannot be induced in the human, and studies of their mechanisms and of their consequences on brain molecules and circuits are severely limited. Therefore, an animal model was designed to study these seizures. The model reproduces the fundamental key elements of the human condition: the age specificity, the physiological temperatures seen in fevers of children, the length of the seizures and their lack of immediate morbidity. Neuroanatomical, molecular and functional methods have been used in this model to determine the consequences of prolonged febrile seizures on the survival and integrity of neurons, and on hyperexcitability in the hippocampal-limbic network. Experimental prolonged febrile seizures did not lead to death of any of the seizure-vulnerable populations in hippocampus, and the rate of neurogenesis was also unchanged. Neuronal function was altered sufficiently to promote synaptic reorganization of granule cells, and transient and long-term alterations in the expression of specific genes were observed. The contribution of these consequences of febrile seizures to the epileptogenic process is discussed

    Seasonal variations in the nitrogen isotopic composition of settling particles at station K2 in the western subarctic North Pacific

    Get PDF
    Intensive observations using hydrographical cruises and moored sediment trap deployments during 2010 and 2012 at station K2 in the North Pacific western subarctic gyre (WSG) revealed seasonal changes in δ15N of both suspended and settling particles. Suspended particles (SUS) were collected from depths between the surface and 200 m; settling particles by drifting traps (DST; 100-200 m) and moored traps (MST; 200 and 500 m). All particles showed higher δ15N values in winter and lower in summer, contrary to the expected by isotopic fractionation during phytoplankton nitrate consumption. We suggest that these observed isotopic patterns are due to ammonium consumption via light-controlled nitrification, which could induce variations in δ15N(SUS) of 0.4-3.1 ‰ in the euphotic zone (EZ). The δ15N(SUS) signature was reflected by δ15 N(DST) despite modifications during biogenic transformation from suspended particles in the EZ. δ15 N enrichment (average: 3.6 ‰) and the increase in C:N ratio (by 1.6) in settling particles suggests year-round contributions of metabolites from herbivorous zooplankton as well as TEPs produced by diatoms. Accordingly, seasonal δ15 N(DST) variations of 2.4-7.0 ‰ showed a significant correlation with primary productivity (PP) at K2. By applying the observed δ15 N(DST) vs. PP regression to δ15 N(MST) of 1.9-8.0 ‰, we constructed the first annual time-series of PP changes in the WSG. Moreover, the monthly export ratio at 500 m was calculated using both estimated PP and measured organic carbon fluxes. Results suggest a 1.6 to 1.8 times more efficient transport of photosynthetically-fixed carbon to the intermediate layers occurs in summer/autumn rather than winter/spring

    Application of rare variant transmission disequilibrium tests to epileptic encephalopathy trio sequence data

    Get PDF
    The classic epileptic encephalopathies, including infantile spasms (IS) and Lennox–Gastaut syndrome (LGS), are severe seizure disorders that usually arise sporadically. De novo variants in genes mainly encoding ion channel and synaptic proteins have been found to account for over 15% of patients with IS or LGS. The contribution of autosomal recessive genetic variation, however, is less well understood. We implemented a rare variant transmission disequilibrium test (TDT) to search for autosomal recessive epileptic encephalopathy genes in a cohort of 320 outbred patient–parent trios that were generally prescreened for rare metabolic disorders. In the current sample, our rare variant transmission disequilibrium test did not identify individual genes with significantly distorted transmission over expectation after correcting for the multiple tests. While the rare variant transmission disequilibrium test did not find evidence of a role for individual autosomal recessive genes, our current sample is insufficiently powered to assess the overall role of autosomal recessive genotypes in an outbred epileptic encephalopathy population

    EUSO-Offline: A comprehensive simulation and analysis framework

    Get PDF
    The complexity of modern cosmic ray observatories and the rich data sets they capture often require a sophisticated software framework to support the simulation of physical processes, detector response, as well as reconstruction and analysis of real and simulated data. Here we present the EUSO-Offline framework. The code base was originally developed by the Pierre Auger Collaboration, and portions of it have been adopted by other collaborations to suit their needs. We have extended this software to fulfill the requirements of Ultra-High Energy Cosmic Ray detectors and very high energy neutrino detectors developed for the Joint Exploratory Missions for an Extreme Universe Observatory (JEM-EUSO). These path-finder instruments constitute a program to chart the path to a future space-based mission like POEMMA. For completeness, we describe the overall structure of the framework developed by the Auger collaboration and continue with a description of the JEM-EUSO simulation and reconstruction capabilities. The framework is written predominantly in modern C++ (compliled against C++17) and incorporates third-party libraries chosen based on functionality and our best judgment regarding support and longevity. Modularity is a central notion in the framework design, a requirement for large collaborations in which many individuals contribute to a common code base and often want to compare different approaches to a given problem. For the same reason, the framework is designed to be highly configurable, which allows us to contend with a variety of JEM-EUSO missions and observation scenarios. We also discuss how we incorporate broad, industry-standard testing coverage which is necessary to ensure quality and maintainability of a relatively large code base, and the tools we employ to support a multitude of computing platforms and enable fast, reliable installation of external packages. Finally, we provide a few examples of simulation and reconstruction applications using EUSO-Offline

    Does optimal foraging theory explain why suburban Florida scrub-jays (Aphelocoma coerulescens) feed their young human-provided food?

    Full text link
    Optimal foraging theory assumes that a forager can adequately assess the quality of its prey and predicts that parents feed their young low-quality foods only when suffering unpredicted reductions in their ability to provision. Wildland Florida scrub-jays feed their young exclusively arthropods, but suburban parents include human-provided foods in the nestling diet, with possible costs in terms of reduced growth and survival. We tested experimentally whether parents feed human-provided foods, given the apparent costs, because: 1) they do not discriminate between food types, 2) they switch to low-quality, abundant foods when natural food availability in the environment is low, or 3) they switch when the time needed to obtain natural food is high. Parents discriminated between natural and human-provided foods by showing a preference for natural foods when rearing young. When the handling time of natural foods was increased experimentally, parents in the suburban and wildland habitats switched to human-provided foods. Supplementation with natural foods increased preference for this food in both habitats. Suburban parents chose more natural foods than wildland parents, suggesting that they have a greater preference for natural foods. Regardless of preferences demonstrated at feeders, parents in both the suburbs and wildlands delivered mostly natural foods to nestlings, independent of natural food availability. Nonetheless, natural foods are likely to be scarcer in the environment than in our experimental tests. Because natural food availability is lower in the suburbs than in the wildland habitat, parents in the suburbs may be forced to switch to human-provided foods when feeding nestlings
    • …
    corecore